Solar power forecasting, data assimilation, and El Gato

Tony Lorenzo
IES Renewable Power Forecasting Group
Outline

• Motivation & Background
• Solar forecasting techniques
• Satellite data assimilation
• Computational challenges and resources
• Future work
Forecasting Partners
Solar Variability
Operational Forecasting for Utilities

- Final result is a web page with graphics and information meant to help the utilities understand and use the forecasts.
- Also have a HTTP API for programmatic access.
Irradiance to Power Conversion

Global Horizontal Irradiance Forecast

Temperature Forecast

Solar Power Forecast

PV System Model
Outline

• Motivation & Background
• Solar forecasting techniques
• Satellite data assimilation
• Computational challenges and resources
• Future work
Clear-Sky Index

Clear-Sky Index = Observations / Clear-Sky Expectation
History

- TEP asked for solar forecasts because they saw variability as an issue
 - Atmospheric Sciences provided WRF forecasts
 - Physics explored cloud camera and sensor network approaches
Irradiance Sensor Network
Network Forecasts

Interpolated Clear-Sky Map

Shifted Clear-Sky Map
Satellite Derived Irradiance
Summary of Results

Comparing Irradiance Forecast Errors

- Clearsky
- UA-WRF
- Network
- Base Satellite Img.
- Satellite Img. after Optimal Interpolation
- Satellite

RMSE (W/m²) vs. Forecast Horizon (min)
Outline

- Motivation & Background
- Solar forecasting techniques
- Satellite data assimilation
- Computational challenges and resources
- Future work
Satellite Derived Irradiance
Satellite-derived GHI estimate

- Two conversion models:
 - An semi-empirical (SE) model that applies a regression to data from visible images
 - A physical model that estimates cloud properties and performs radiative transfer (UASIBS)
- Nominally 1 km resolution
- Using 75 km x 82 km area over Tucson
Optimal Interpolation

- Bayesian technique derived by minimizing the mean squared distance between the field and observations
- Is the best linear unbiased estimator of the field
- Same as the update step in the Kalman filter

Better satellite-derived estimate of GHI

Optimal Interpolation

Satellite Derived Irradiance:

\[x_b = x_t + g \]
\[g \sim N(0, P) \]

Observations:

\[y = Hx_t + e \]
\[e \sim N(0, R) \]
OI Algorithm

\[x_a = x_b + W(y - Hx_b) \]

\[W = PH^T(R + HPH^T)^{-1} \]

Better GHI estimate

Maps points from satellite image to observations

Need to a way to estimate these error covariances

Error Covariances: P and R

- Decompose P into diagonal variance matrix and correlation matrix:
 $$P = D^{1/2} C D^{1/2}$$
- Prescribe a correlation between image pixels based on the *difference in cloudiness* to construct C
- Compute D from cloud free training images
- Assume observation errors are uncorrelated and estimate R from data
Results (one image)
Results

- 900 verification images analyzed
- Six-fold cross-validation over sensors performed
- The large bias for the empirical model was nearly eliminated
- RMSE reduced by 50%
Comparison of Cloudiness, Empirical, and Spatial Covariance

Adjusted Visible Albedo

Cloudiness Covariance Analysis

Empirical Covariance Analysis

Spatial Covariance Analysis
\[P = D^{1/2} C D^{1/2} \]

Correlation Functions

\[
k(r) = \begin{cases} \frac{1}{l} - \frac{r}{l} & r < l \\ 0 & r \geq l \end{cases}
\]

\[
k(r) = \exp \left(-\frac{r}{l} \right)
\]

\[
k(r) = \exp \left(-\frac{r^2}{l^2} \right)
\]

Distance Metrics

\[
r_{ij} = |z_i - z_j|
\]

\[
r_{ij} = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}
\]

\[
C_{ij} = k(r_{ij})
\]

Need to tune \(d, k, l, r \)
Parameter Optimization

Parameter Optimization MSE Surfaces for the UASIBS Model

- **Exp. k**
 - Cloudiness Correlation f
 - Spatial Correlation $f^{1/2}$

- **Linear k**
 - Cloudiness Correlation f
 - Spatial Correlation $f^{1/2}$

- **Sq. exp. k**
 - Cloudiness Correlation f
 - Spatial Correlation $f^{1/2}$

MSE (clear-sky index)
Outline

• Motivation & Background
• Solar forecasting techniques
• Satellite data assimilation
• Computational challenges and resources
• Future work
Parameter Optimization

- Satellite to irradiance model
 - UASIBS
 - Semi-empirical
- Correlation method
 - Cloudiness
 - Spatial
- Correlation function
 - Linear
 - Exponential
 - Squared Exponential
- Correlation length
- P error inflation
- Cloud height adjustment

500 training images * 2 models * 6 fold cross validation * 50 height adj. * 2 corr. methods * 3 corr. fcns. * ~10 corr. lengths * ~10 inflation params = 200 million OI analyses

1 year on a 4 core laptop!
7 weeks on a 24 core server
<1 week using GPUs on El Gato
Translating code for the GPU

```python
import numpy as np
from scipy import linalg

def compute_analysis_cpu(xb, y, R, P, H):
    HT = np.transpose(H)
    hph = np.dot(H, np.dot(P, HT))
    inv = linalg.inv(R + hph)
    W = np.dot(P, np.dot(HT, inv))
    xa = xb + np.dot(W, y - np.dot(H, xb))
    return xa

xa = compute_analysis_cpu(xb, y, R, P, H)
```

```python
import skcuda.linalg as cu
from pycuda import gpuarray

def compute_analysis_cuda(xb, y, R, P, H):
    HT = cu.transpose(H)
    hph = cu.dot(H, cu.dot(P, HT))
    inv = cu.inv(R + hph)
    W = cu.dot(P, cu.dot(HT, inv))
    xa = xb + cu.dot(W, y - cu.dot(H, xb))
    return xa

xb_gpu = gpuarray.to_gpu(xb)
...
xa_gpu = compute_analysis_cuda(xb_gpu, y_gpu, R_gpu, P_gpu, H_gpu)
xa = xa_gpu.get()
```
UA HPC Resources

- **Free** allocations for research groups
- HPC consultants ready to help

El Gato
- 136 nodes
- 140 NVIDIA Tesla K20x GPUs
- 20 Intel Phi coprocessors

Ocelote
- 336 nodes
- 15 NVIDIA Tesla K80 GPUs
- 10044 cores
Other Resources

- **Dask**: parallel computing library
- **Numba**: JIT for high performance Python
- **Singularity**: containers on HPC

- **PyCUDA**: pythonic access to CUDA
- **scikit-cuda**: CUDA scientific library wrapper (cuBLAS)
- **Sumatra**: automated provenance tracking
Sumatra Provenance Tracking: Computational Lab Notebook

- No more resultsV1, results_best_maybe?
- Keeps track of:
 - Simulation parameters
 - Input files
 - Output files
 - Code version
 - Start/end time
 - Custom tags & comments

Outline

• Motivation & Background
• Solar forecasting techniques
• Satellite data assimilation
• Computational challenges and resources
• Future work
Cloud Advection

time: 00.08
Ensemble Kalman Filter

Model produces a new background from previous analysis

\[
X^f = M(X^a) \\
P^f = \tilde{X}^f(\tilde{X}^f)^T
\]

Data

Assimilation produces a new analysis from previous background

\[
K = P^f H^T (H P^f H^T + R)^{-1} \\
X^a = X^f + K(Y - HX^f) \\
P^a = \tilde{X}^a (\tilde{X}^a)^T
\]
Thank you!