Solar power forecasting, data assimilation, and El Gato

Tony Lorenzo IES Renewable Power Forecasting Group

Outline

- Motivation & Background
- Solar forecasting techniques
- Satellite data assimilation
- Computational challenges and resources
- Future work

Forecasting Partners

Solar Variability

Operational Forecasting for Utilities

- Final result is a web page with graphics and information meant to help the utilities understand and use the forecasts
- Also have a HTTP API for programmatic access

Irradiance to Power Conversion

Outline

- Motivation & Background
- Solar forecasting techniques
- Satellite data assimilation
- Computational challenges and resources
- Future work

Clear-Sky Index

Clear-Sky Index = Observations / Clear-Sky Expectation

History

- TEP asked for solar forecasts because they saw variability as an issue
 - Atmospheric Sciences provided WRF forecasts
 - Physics explored cloud camera and sensor network approaches

Irradiance Sensor Network

Network Forecasts

Satellite Derived Irradiance

VIS_20170119_2130

Summary of Results

Outline

- Motivation & Background
- Solar forecasting techniques
- Satellite data assimilation
- Computational challenges and resources
- Future work

Satellite Derived Irradiance

VIS_20170119_2130

Satellite-derived GHI estimate

- Two conversion models:
 - An semi-empirical (SE) model that applies a regression to data from visible images
 - A physical model that estimates cloud properties and performs radiative transfer (UASIBS)
- Nominally 1 km resolution
- Using 75 km x 82 km area over Tucson

Optimal Interpolation

Better satellite-derived estimate of GHI

- Bayesian technique derived by minimizing the mean squared distance between the field and observations
- Is the best linear unbiased estimator of the field
- Same as the update step in the Kalman filter

Optimal Interpolation

Satellite Derived Irradiance:

 $\mathbf{x}_b = \mathbf{x}_t + \mathbf{g}$ $\mathbf{g} \sim N(\mathbf{0}, \mathbf{P})$

Observations: $\mathbf{y} = \mathbf{H}\mathbf{x}_t + \mathbf{e}$ $\mathbf{e} \sim N(\mathbf{0}, \mathbf{R})$

OI Algorithm

Need to a way to estimate these error covariances

Error Covariances: P and R

20

 Decompose P into diagonal variance matrix and correlation matrix:

 $P = D^{1/2} C D^{1/2}$

- Prescribe a correlation between image pixels based on the *difference in cloudiness* to construct C
- Compute **D** from cloud free training images
- Assume observation errors are uncorrelated and estimate R from data

Results (one image)

Results

- 900 verification images analyzed
- Six-fold cross-validation over sensors performed
- The large bias for the empirical model was nearly eliminated
- RMSE reduced by 50%

Clear-Sky Index

Clear-Sky Index

Comparison of Cloudiness, Empirical, and Spatial Covariance

OI Parameters

 $\mathbf{P} = \mathbf{D}^{1/2} \mathbf{C} \mathbf{D}^{1/2} \qquad \qquad \mathbf{D} = d\mathbf{D}' \qquad \qquad C_{ij} = k(r_{ij})$

26

Correlation Functions

$$k(r) = \begin{cases} 1 - \frac{r}{l} & r < l \\ 0 & r \ge l \end{cases}$$
$$k(r) = \exp\left(-\frac{r}{l}\right)$$
$$k(r) = \exp\left(-\frac{r^2}{l^2}\right)$$

Distance Metrics

$$r_{ij} = |z_i - z_j|$$

 $r_{ij} = \sqrt{(x_i - x_j)^2 + (y_i - y_j)^2}$

Need to tune d, k, l, r

Parameter Optimization

Outline

- Motivation & Background
- Solar forecasting techniques
- Satellite data assimilation
- Computational challenges and resources
- Future work

Parameter Optimization

- Satellite to irradiance model
 - UASIBS
 - Semi-empirical
- Correlation method
 - Cloudiness
 - Spatial

- Correlation function
 - Linear
 - Exponential
 - Squared Exponential
- Correlation length
- **P** error inflation
- Cloud height adjustment

500 training images * 2 models * 6 fold cross validation * 50 height adj. * 2 corr. methods * 3 corr. fcns. * ~10 corr. lengths * ~10 inflation params = 200 million OI analyses

1 year on a 4 core laptop! 7 weeks on a 24 core server <1 week using GPUs on El Gato

Translating code for the GPU

```
import numpy as np
from scipy import linalg
```

```
def compute_analysis_cpu(xb, y, R, P, H):
    HT = np.transpose(H)
    hph = np.dot(H, np.dot(P, HT))
    inv = linalg.inv(R + hph)
    W = np.dot(P, np.dot(HT, inv))
    xa = xb + np.dot(W, y - np.dot(H, xb))
    return xa
```

```
xa = compute_analysis_cpu(xb, y, R, P, H)
```

import skcuda.linalg as cu
from pycuda import gpuarray

def compute_analysis_cuda(xb, y, R, P, H):
 HT = cu.transpose(H)
 hph = cu.dot(H, cu.dot(P, HT))
 inv = cu.inv(R + hph)
 W = cu.dot(P, cu.dot(HT, inv))
 xa = xb + cu.dot(W, y - cu.dot(H, xb))
 return xa

xb_gpu = gpuarray.to_gpu(xb)
...
xa_gpu = compute_analysis_cuda(
 xb_gpu, y_gpu, R_gpu, P_gpu, H_gpu)
xa = xa_gpu.get()

UA HPC Resources

- Free allocations for research groups
- HPC consultants ready to help

El Gato

- 136 nodes
- 140 NVIDIA Tesla K20x GPUs
- 20 Intel Phi coprocessors

Ocelote

- 336 nodes
- 15 NVIDIA Tesla K80 GPUs
- 10044 cores

Other Resources

- <u>Dask</u>: parallel computing library
- <u>Numba</u>: JIT for high performance Python
- <u>Singularity</u>: containers on HPC

- <u>PyCUDA</u>: pythonic access to CUDA
- <u>scikit-cuda</u>: CUDA scientific library wrapper (cuBLAS)
- <u>Sumatra</u>: automated provenance tracking

Sumatra Provenance Tracking: Computational Lab Notebook

- No more resultsV1, results_best_maybe?
- Keeps track of:
 - Simulation parameters
 - Input files
 - Output files
 - Code version
 - Start/end time
 - Custom tags & comments

More info at http://rrcns.readthedocs.io/en/latest/provenance_tracking.html

Outline

- Motivation & Background
- Solar forecasting techniques
- Satellite data assimilation
- Computational challenges and resources
- Future work

Cloud Advection

time: 00.08

Ensemble Kalman Filter

Thank you!

