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Forecasting Partners

TEP

APS
PNM



Solar Variability
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Operational Forecasting for Utilities

● Final result is a web 
page with graphics 
and information 
meant to help the 
utilities understand 
and use the 
forecasts

● Also have a HTTP 
API for 
programmatic access



Irradiance to Power Conversion
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PV System 
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Clear-Sky Index

Clear-Sky Index = Observations / Clear-Sky Expectation
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History

• TEP asked for solar 
forecasts because they 
saw variability as an 
issue

• Atmospheric Sciences 
provided WRF forecasts

• Physics explored cloud 
camera and sensor 
network approaches
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Irradiance Sensor Network
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Network Forecasts
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Satellite Derived Irradiance
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Summary of Results
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Satellite Derived Irradiance



Satellite-derived GHI estimate

• Two conversion models:
• An semi-empirical (SE) 

model that applies a 
regression to data from 
visible images

• A physical model that 
estimates cloud 
properties and performs 
radiative transfer 
(UASIBS)

• Nominally 1 km resolution
• Using 75 km x 82 km area 

over Tucson
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Optimal Interpolation

• Bayesian technique 
derived by minimizing 
the mean squared 
distance between the 
field and observations

• Is the best linear 
unbiased estimator of 
the field

• Same as the update 
step in the Kalman 
filter

Optimal
Interpolation

Better satellite-derived estimate of GHI

Satellite image from http://goes.gsfc.nasa.gov/text/goesnew.html



Satellite Derived 
Irradiance:

Observations:
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Optimal Interpolation

Optimal
Interpolation

Better satellite-derived estimate of GHI

Satellite image from http://goes.gsfc.nasa.gov/text/goesnew.html



OI Algorithm
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xa= xb + W(y - Hxb)

W = PHT(R + HPHT)-1

Better GHI 
estimate

Need to a way to estimate 
these error covariances

Maps points 
from satellite 

image to 
observations

Satellite image from http://goes.gsfc.nasa.gov/text/goesnew.html



Error Covariances: P and R

• Decompose P into diagonal 
variance matrix and 
correlation matrix:

P = D1/2 C D1/2

• Prescribe a correlation 
between image pixels based 
on the difference in 
cloudiness to construct C

• Compute D from cloud free 
training images

• Assume observation errors are 
uncorrelated and estimate R 
from data 
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Results (one image)
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Results

• 900 verification 
images analyzed 

• Six-fold 
cross-validation over 
sensors performed

• The large bias for the 
empirical model was 
nearly eliminated

• RMSE reduced by 50%
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OI Parameters

Need to tune

Distance MetricsCorrelation Functions



Parameter Optimization
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Parameter Optimization

• Satellite to irradiance 
model

• UASIBS
• Semi-empirical

• Correlation method
• Cloudiness
• Spatial

• Correlation function
• Linear
• Exponential
• Squared Exponential

• Correlation length
• P error inflation
• Cloud height adjustment

500 training images * 2 models * 6 fold cross validation * 
50 height adj. * 2 corr. methods * 3 corr. fcns. * ~10 corr. 
lengths * ~10 inflation params = 200 million OI analyses

7 weeks on a 24 
core server

1 year on a 4 core 
laptop!

<1 week using 
GPUs on El Gato
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Translating code for the GPU

import numpy as np

from scipy import linalg

def compute_analysis_cpu(xb, y, R, P, H):

    HT = np.transpose(H)

    hph = np.dot(H, np.dot(P, HT))

    inv = linalg.inv(R + hph)

    W = np.dot(P, np.dot(HT, inv))

    xa = xb + np.dot(W, y - np.dot(H, xb))

    return xa

xa = compute_analysis_cpu(xb, y, R, P, H)

import skcuda.linalg as cu

from pycuda import gpuarray

def compute_analysis_cuda(xb, y, R, P, H):

    HT = cu.transpose(H)

    hph = cu.dot(H, cu.dot(P, HT))

    inv = cu.inv(R + hph)

    W = cu.dot(P, cu.dot(HT, inv))

    xa = xb + cu.dot(W, y - cu.dot(H, xb))

    return xa

xb_gpu = gpuarray.to_gpu(xb)

...

xa_gpu = compute_analysis_cuda(

    xb_gpu, y_gpu, R_gpu, P_gpu, H_gpu)

xa = xa_gpu.get()
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UA HPC Resources

El Gato
• 136 nodes
• 140 NVIDIA Tesla 

K20x GPUs
• 20 Intel Phi 

coprocessors

Ocelote
• 336 nodes
• 15 NVIDIA Tesla K80 

GPUs
• 10044 cores

• Free allocations for research groups
• HPC consultants ready to help
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Other Resources

• Dask: parallel 
computing library

• Numba: JIT for high 
performance Python

• Singularity: containers 
on HPC

• PyCUDA: pythonic 
access to CUDA

• scikit-cuda: CUDA 
scientific library 
wrapper (cuBLAS)

• Sumatra: automated 
provenance tracking

http://dask.readthedocs.io/en/latest/
http://numba.pydata.org/numba-doc/latest/index.html
http://singularity.lbl.gov/
https://documen.tician.de/pycuda/
https://scikit-cuda.readthedocs.io/en/latest/
http://sumatra.readthedocs.io/en/0.7.4/
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Sumatra Provenance Tracking:
Computational Lab Notebook

• No more resultsV1, 
results_best_maybe?

• Keeps track of:
• Simulation parameters
• Input files
• Output files
• Code version
• Start/end time
• Custom tags & 

comments

More info at http://rrcns.readthedocs.io/en/latest/provenance_tracking.html
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Cloud Advection
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Ensemble Kalman Filter



Thank you!
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