
Solar power forecasting, data
assimilation, and El Gato

Tony Lorenzo
IES Renewable Power Forecasting Group

Outline

• Motivation & Background
• Solar forecasting techniques
• Satellite data assimilation
• Computational challenges and resources
• Future work

2
2

3

Forecasting Partners

TEP

APS
PNM

Solar Variability

4

5

Operational Forecasting for Utilities

● Final result is a web
page with graphics
and information
meant to help the
utilities understand
and use the
forecasts

● Also have a HTTP
API for
programmatic access

Irradiance to Power Conversion

6
6

PV System
Model

Outline

• Motivation & Background
• Solar forecasting techniques
• Satellite data assimilation
• Computational challenges and resources
• Future work

7
7

8

Clear-Sky Index

Clear-Sky Index = Observations / Clear-Sky Expectation

9

History

• TEP asked for solar
forecasts because they
saw variability as an
issue

• Atmospheric Sciences
provided WRF forecasts

• Physics explored cloud
camera and sensor
network approaches

10

Irradiance Sensor Network

11

Network Forecasts

12

Satellite Derived Irradiance

13

Summary of Results

Outline

• Motivation & Background
• Solar forecasting techniques
• Satellite data assimilation
• Computational challenges and resources
• Future work

14
14

15

Satellite Derived Irradiance

Satellite-derived GHI estimate

• Two conversion models:
• An semi-empirical (SE)

model that applies a
regression to data from
visible images

• A physical model that
estimates cloud
properties and performs
radiative transfer
(UASIBS)

• Nominally 1 km resolution
• Using 75 km x 82 km area

over Tucson

16

17

Optimal Interpolation

• Bayesian technique
derived by minimizing
the mean squared
distance between the
field and observations

• Is the best linear
unbiased estimator of
the field

• Same as the update
step in the Kalman
filter

Optimal
Interpolation

Better satellite-derived estimate of GHI

Satellite image from http://goes.gsfc.nasa.gov/text/goesnew.html

Satellite Derived
Irradiance:

Observations:

18

Optimal Interpolation

Optimal
Interpolation

Better satellite-derived estimate of GHI

Satellite image from http://goes.gsfc.nasa.gov/text/goesnew.html

OI Algorithm

19

xa= xb + W(y - Hxb)

W = PHT(R + HPHT)-1

Better GHI
estimate

Need to a way to estimate
these error covariances

Maps points
from satellite

image to
observations

Satellite image from http://goes.gsfc.nasa.gov/text/goesnew.html

Error Covariances: P and R

• Decompose P into diagonal
variance matrix and
correlation matrix:

P = D1/2 C D1/2

• Prescribe a correlation
between image pixels based
on the difference in
cloudiness to construct C

• Compute D from cloud free
training images

• Assume observation errors are
uncorrelated and estimate R
from data

20

Results (one image)

21
21

Results

• 900 verification
images analyzed

• Six-fold
cross-validation over
sensors performed

• The large bias for the
empirical model was
nearly eliminated

• RMSE reduced by 50%

22

23

24

25

26

OI Parameters

Need to tune

Distance MetricsCorrelation Functions

Parameter Optimization

27

Outline

• Motivation & Background
• Solar forecasting techniques
• Satellite data assimilation
• Computational challenges and resources
• Future work

28
28

29

Parameter Optimization

• Satellite to irradiance
model

• UASIBS
• Semi-empirical

• Correlation method
• Cloudiness
• Spatial

• Correlation function
• Linear
• Exponential
• Squared Exponential

• Correlation length
• P error inflation
• Cloud height adjustment

500 training images * 2 models * 6 fold cross validation *
50 height adj. * 2 corr. methods * 3 corr. fcns. * ~10 corr.
lengths * ~10 inflation params = 200 million OI analyses

7 weeks on a 24
core server

1 year on a 4 core
laptop!

<1 week using
GPUs on El Gato

30

Translating code for the GPU

import numpy as np

from scipy import linalg

def compute_analysis_cpu(xb, y, R, P, H):

 HT = np.transpose(H)

 hph = np.dot(H, np.dot(P, HT))

 inv = linalg.inv(R + hph)

 W = np.dot(P, np.dot(HT, inv))

 xa = xb + np.dot(W, y - np.dot(H, xb))

 return xa

xa = compute_analysis_cpu(xb, y, R, P, H)

import skcuda.linalg as cu

from pycuda import gpuarray

def compute_analysis_cuda(xb, y, R, P, H):

 HT = cu.transpose(H)

 hph = cu.dot(H, cu.dot(P, HT))

 inv = cu.inv(R + hph)

 W = cu.dot(P, cu.dot(HT, inv))

 xa = xb + cu.dot(W, y - cu.dot(H, xb))

 return xa

xb_gpu = gpuarray.to_gpu(xb)

...

xa_gpu = compute_analysis_cuda(

 xb_gpu, y_gpu, R_gpu, P_gpu, H_gpu)

xa = xa_gpu.get()

31

UA HPC Resources

El Gato
• 136 nodes
• 140 NVIDIA Tesla

K20x GPUs
• 20 Intel Phi

coprocessors

Ocelote
• 336 nodes
• 15 NVIDIA Tesla K80

GPUs
• 10044 cores

• Free allocations for research groups
• HPC consultants ready to help

32

Other Resources

• Dask: parallel
computing library

• Numba: JIT for high
performance Python

• Singularity: containers
on HPC

• PyCUDA: pythonic
access to CUDA

• scikit-cuda: CUDA
scientific library
wrapper (cuBLAS)

• Sumatra: automated
provenance tracking

http://dask.readthedocs.io/en/latest/
http://numba.pydata.org/numba-doc/latest/index.html
http://singularity.lbl.gov/
https://documen.tician.de/pycuda/
https://scikit-cuda.readthedocs.io/en/latest/
http://sumatra.readthedocs.io/en/0.7.4/

33

Sumatra Provenance Tracking:
Computational Lab Notebook

• No more resultsV1,
results_best_maybe?

• Keeps track of:
• Simulation parameters
• Input files
• Output files
• Code version
• Start/end time
• Custom tags &

comments

More info at http://rrcns.readthedocs.io/en/latest/provenance_tracking.html

Outline

• Motivation & Background
• Solar forecasting techniques
• Satellite data assimilation
• Computational challenges and resources
• Future work

34
34

35

Cloud Advection

36

Ensemble Kalman Filter

Thank you!

37
37

