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Irradiance forecasting
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• Several 20 MW ramps taking about 5 minutes
• A 20 MW is about equivalent to the demand of 10,000 homes
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Irradiance forecast techniques
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• The University of Arizona Hydrology and Atmospheric Science WRF model 
forecasts irradiance.

• Can we do better using more data on intra-hour timescales?
• Require irradiance fields on the scale of a city (Tucson, AZ) every 5 minutes
• We will advect a 2D cloud field using a 2D cloud motion field.
• This work will focus on improving the cloud motion field.



Forecast system
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• Each ensemble member has unique cloud field and cloud motion 
field

• The LETKF and EnKF are used for assimilation
• Irradiance perturbation and divergence removal will be discussed 

later
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Sensor data
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• 15 Solar arrays
• 12 irradiance sensors
• Data is collected approximately every 5 

minutes

• Normalized by clear sky 
expectation

• Unitless and detrended



Satellite images
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• Geostationary satellite images (GOES-15)
• Available every 15 minutes
• Spatial resolution of 1 km2

• Converted to clear sky index (normalized 
irradiance)



Satellite data
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The Semi-Empirical model maps satellite 
pixel values to a clear sky index value.

Semi-Empirical model

(Perez et al., 2002)



Optical flow
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• Choose features on the satellite image based on the gradient of the image and the 
image’s windowed variance

• Track features to estimate the cloud motion field



Numerical Weather Prediction (NWP)

11

• It has an inner domain with a horizontal resolution of 1.8 km which covers 
Arizona and New Mexico

• We will use U and V wind components from vertical level with highest 
relative humidity
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Optimal interpolation of ground sensors
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• Ground data is sparse but accurate.
• Satellite derived CSI fields are available on a large scale, but less accurate.
• Take semi-empirical (SE) model  as background and assimilate ground 

sensors using optimal interpolation

P = D1/2CD1/2

W = PHT (R+HPHT )�1

xa = xb +W(y �Hxb)

(Lorenzo et al., 2017)



Different choices of C
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• Correlation based on spatial 
distance between locations

• Produces gradient which is not 
seen in original satellite image

ri,j =
q
(xi � xj)2 + (yi � yj)2

ri,j = |zi � zj |

Correlation Matrix

Ci,j = exp

 
�
r2i,j
2l2

!

• Distance based difference in 
normalized satellite value, z.

• Produces analysis which is 
more physically meaningful

(Lorenzo et al., 2017)
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Advection model
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A Typical weather model must track many things:

• Wind in three directions
• Density
• Pressure
• Temperature
• Moisture

Simplification is needed to run operational forecasts. Previous studies have shown 
that satellite advection out performs NWP for short term (3-6 hour) forecasts.

• Track only 2D wind at cloud layer
• Advect clouds represented as normalized pixel value
• Update wind fields hourly based on a numerical weather model
• Use 3rd order R-K method in time and 4th order special derivative based on WRF 

advection scheme

(Kalnay, 2002)(Perez et al., 2010)



Normalized irradiance perturbation
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• Create random function with desired random properties
• Target only those parts of the image which you wish to perturb
• In our case, we target cloudy areas to capture changes taking place inside 

and on the edges of clouds



Normalized irradiance perturbation
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Ensemble of perturbed fields
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Member 2 Member 3

Member 1Mean
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Data summary
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• Ground data is available every 5 minutes
• Satellite data are available every 15 minutes (5 minutes with GOES-17)
• Optical flow vectors are available with every new satellite image
• Wind fields coming from numerical weather prediction are available 

every hour
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Forecast system
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• Each ensemble member has unique cloud field and cloud motion field
• The LETKF is used to assimilate large amounts of observations such as 

when assimilating WRF wind fields
• The EnKF is used to assimilate small amounts of observations such as 

sparse optical flow
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An example day: May 29th 2014
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Wind observation
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• The resulting vectors (scatter plot) can be thought of as observations of the 
cloud motion field 

• These can then be assimilated into the cloud motion field derived from a 
numerical weather model (background)



Assimilate optical flow data
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• Assimilate optical flow to improve cloud motion field
• The analysis cloud motion field has greater agreement with our optical flow 

vectors



Assimilate optical flow data
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• Assimilate optical flow to improve cloud motion field
• The analysis cloud motion field has greater agreement with our optical flow 

vectors



Forecasting with optical flow
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• Assimilate optical flow to improve wind field
• Removal of divergence further reduces error and improves 



Forecasting with optical flow
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• Assimilate optical flow to improve wind field
• Removal of divergence further reduces error and improves 



Remove divergence with Poisson’s equation

29

~V = �r�+

˜V

r · ~V = �r2�

~n ·r� = 0 on @⌦

Ṽ = ~V +r�

Isolate portion of vector field with
non-zero divergence

Advect only using the portion of the 
vector field with zero divergence



Forecasting with and without assimilation

30

• Comparison of forecasts derived from Numerical Weather Prediction cloud 
motion and with optical flow vectors assimilated.

• Error is reduced when optical flow vectors are assimilated
• A large portion of error reduction come from correct cloud front position



Forecasting with and without assimilation
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• Comparison of forecasts derived from Numerical Weather Prediction cloud 
motion and with optical flow vectors assimilated.

• Error is reduced when optical flow vectors are assimilated
• A large portion of error reduction come from correct cloud front position
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Error time series
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Error is calculated as RMSE between forecasted normalized irradiance and the 
actual satellite derived normalized irradiance for a 2240 km2 area over Tucson. 
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Summary
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• Short term irradiance forecasts through combining data from satellites, 
ground sensors, numerical weather prediction, and optical flow

• LETKF allows us to quickly assimilate a large amount of observations
• Assimilation of optical flow introduces convergence which should be 

removed
• Error is significantly reduced in comparison to using NWP winds alone
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Thank you!
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