Renewable Energy Forecasting

What kinds of renewable energy forecasts?

- Technology
 Solar
 PV
 CSP
 - Wind
 - Biofuels

Hydro

- Geothermal
- Tidal

Time horizon

• 1 minute

- 1 hour
- 1 day
- 1 week

• 1 month

- 1 season
- 1 year
- 1 investment

- Time resolution
 - 1 minute
 - 1 hour
 - 1 day
 - 1 week
 - 1 month
 - 1 season
 - 1 year
 - 1 investment

- Data source
 - Observational
 - Weather
 - Satellites
 - RADAR
 - Sky cameras
 - LIDAR
 - Modeled
 - Weather
 - Climate
 - Satellite
 - RADAR

ARIZONA Hydrology and Atmospheric Sciences

Solar and wind price forecasts

Inputs:

- Price data
- Tariffs
- Innovation rate
- Subsidies (local, state, federal, foreign)
- Regulatory models
- Economic models

Margolis et. al., NREL/Sunshot 2017 NREL/PR-6A20-68425

Solar and wind price forecasts

Inputs:

- Price data
- Tariffs
- Innovation rate (wind and gas)
- Subsidies (local, state, federal, foreign)
- Regulatory models
- Economic models

Figure 8. Projected costs for the SMART wind power plant at a range of different wind resource sites using the accelerated R&D pathway relative to future natural gas prices

Dykes et. al., NREL 2017

Solar and wind capacity forecasts

Renewable Energy: Electric Power Sector: Net Summer Capacity

EIA Annual Energy Outlook 2017 eia.gov

Solar and wind capacity forecasts

"America's Renewable Electricity Forecast Grows To 2050, Even Under Trump"

https://www.forbes.com/sites/energyinnovation/2017/05/10/americas-renewable-electricity-forecast-grows-to-2050-even-under-trump

Solar and wind yearly generation forecasts

Electricity Generation (TWh)

Source: Bloomberg New Energy Finance, New Energy Outlook 2017

Solar and wind resource assessments

- Weather models
- Weather to power models

Clouds/wind/weather control the output of solar and wind power plants

Utilities control their conventional generators and market purchases

Clouds/wind/weather control the output of solar and wind power plants

Utilities control their conventional generators and market purchases

A 20 MW ramp is about equivalent to the demand of 10,000 homes

Different utility operations occur on different time scales

construction

New: batteries, demand response, curtailment

Different forecasting methods work better at different time scales

Renewable energy forecast applications

How can forecasts help utilities keep energy costs low and maintain grid reliability?

- Improve energy market trading strategies
- Schedule and invest in more efficient generators (e.g. combined cycle vs. combustion turbine)
- Schedule and invest in transmission
- Reduce costs associated with generator starts
- Defer maintenance associated with excessive generator set point seeking
- Optimize the use of battery storage

Simple benchmark forecast methods

- 1. Clear sky
- 2. Persistence
- 3. Clear sky index persistence

Clear sky forecast

Mean absolute error

··· Clearsky

Persistence forecast

The power 5 minutes from now will be the same as it is now $\hat{y}(t_i) = y(t_i - d)$

Persistence forecast

 $\hat{y}(t_i) = y(t_i - d)$

The power 1 hour from now will be the same it is now

Clear sky index persistence forecast

Clear Sky Index = Observations / Clear Sky Expectation

Clear sky index persistence forecast

The clear sky index 1 hour from now will be the same as it now

$$\hat{y}(t_i) = y(t_i - d)$$

Clear sky index persistence forecast

The power 1 hour from now will be the same as it now, but account for solar position

Numerical Weather Prediction at UA

- UA WRF Model highlights
 - 5.4 km outer domain, 1.8 km inner domain
 - Initialized on the OZ, 6Z, 12Z, 18Z GFS and NAM
 - In summer, 13Z and 15Z RAP initialization
- Local challenges include:
 - Mountains + moisture + heating = monsoon storms
 - Unreliable initialization data from Mexico
 - Extreme planetary boundary layer heights
 - Rapidly changing land/surface characteristics
- 1.8 km resolution, 3 minute outputs of:
 - GHI, DNI, 10 m wind, 80 m wind, temp

WRF configuration details:

- RRTMG
- Morrison 2 mom. or SBUYLIN
- Bougeault-Lacarre or ACM2
- Noah LSM

Weather Research and Forecasting (WRF) community model developed at NCAR, NCEP, ESRL, universities, and more

Christopher Marks, Creative Commons

During the monsoon season and for significant weather events, a model discussion may be available.

Current Discussion Previous Discussion

Model Products

	06z AZ WRF- GFS	06z AZ WRF- NAM	12z AZ WRF- NAM	12z AZ WRF- GFS	12z AZ WRF- RUC			
Domain-Level Products								
Composite RADAR	1.8km 5.4km							
Precipitation	1.8km 5.4km							
Accumulated Precipitation	1.8km 5.4km 1.8kmz 5.4kmz							
Accumulated Snow	1.8km 5.4km							
Snow Cover	1.8km 5.4km							
2m Temp	1.8km 5.4km 1.8kmz 5.4kmz							
10m Wind	1.8km 5.4km 1.8kmz 5.4kmz							
Precipitable								

Solar Observatory Data (opens new tab or window)

Satellite Imagery RADAR Lightning Plots (arizona.edu only) Maps and Plots Arizona Regional WRF Model Data

Idaho Regional WRF Model Data GPS Precipitable Water

Cloud movies

Full Day Cloud Camera Movie

Last 90 mins. Movie

Yesterday's Movie

"Best Of" ATMO Cloud Movies

WRF details

2.2 Flux-Form Euler Equations

Using the variables defined above, the flux-form Euler equations can be writ

F = ma $\frac{\partial_t U + (\nabla \cdot \mathbf{V}u)}{\partial_t V + (\nabla \cdot \mathbf{V}v)}$ $\frac{\partial_t W + (\nabla \cdot \mathbf{V}v)}{\partial_t W + (\nabla \cdot \mathbf{V}v)}$

$$\begin{aligned} & \cdot (\nabla \cdot \mathbf{V}u) - \partial_x (p\phi_\eta) + \partial_\eta (p\phi_x) = F_U \\ & - (\nabla \cdot \mathbf{V}v) - \partial_y (p\phi_\eta) + \partial_\eta (p\phi_y) = F_V \\ & \partial_t W + (\nabla \cdot \mathbf{V}w) - g(\partial_\eta p - \mu) = F_W \\ & \partial_t \Theta + (\nabla \cdot \mathbf{V}\theta) = F_\Theta \\ & \partial_t \mu + (\nabla \cdot \mathbf{V}) = 0 \\ & \partial_t \phi + \mu^{-1} [(\mathbf{V} \cdot \nabla \phi) - gW] = 0 \end{aligned}$$

along with the diagnostic relation for the inverse density

$$\partial_{\eta}\phi = -\alpha\mu,$$

and the equation of state

 $p = p_0 (R_d \theta / p_0 \alpha)^{\gamma}.$

In (2.3) - (2.10), the subscripts x, y and η denote differentiation,

$$\nabla \cdot \mathbf{V}a = \partial_x(Ua) + \partial_y(Va) + \partial_\eta(\Omega a),$$

and

$$\mathbf{V} \cdot \nabla a = U \partial_x a + V \partial_y a + \Omega \partial_\eta a,$$

where a represents a generic variable. $\gamma = c_p/c_v = 1.4$ is the ratio of the heat air, R_d is the gas constant for dry air, and p_0 is a reference pressure (typically right-hand-side (RHS) terms F_U , F_V , F_W , and F_{Θ} represent forcing terms a with the diagnostic equation for dry inverse density

physics, turbulent mixing, spherical projections, and the earth's rotation.

2.3 Inclusion of Moisture Water phase changes

In formulating the moist Euler equations, we retain the coupling of dry air mass to the prognostic variables, and we retain the conservation equation for dry air (2.7), as opposed to coupling the variables to the full (moist) air mass and hence introducing source terms in the mass conservation equation (2.7). Additionally, we define the coordinate with respect to the dry-air mass. Based on these principles, the vertical coordinate can be written as

$$\eta = (p_{dh} - p_{dht})/\mu_d \tag{2.11}$$

where μ_d represents the mass of the dry air in the column and p_{dh} and p_{dht} represent the hydrostatic pressure of the dry atmosphere and the hydrostatic pressure at the top of the dry atmosphere. The coupled variables are defined as

$$\mathbf{V} = \mu_d \mathbf{v}, \quad \Omega = \mu_d \dot{\eta}, \quad \Theta = \mu_d \theta. \tag{2.12}$$

With these definitions, the moist Euler equations can be written as

$$\partial_t U + (\nabla \cdot \mathbf{V}u) + \mu_d \alpha \partial_x p + (\alpha/\alpha_d) \partial_\eta p \partial_x \phi = F_U$$
(2.13)

$$\partial_t V + (\nabla \cdot \mathbf{V}v) + \mu_d \alpha \partial_y p + (\alpha/\alpha_d) \partial_\eta p \partial_y \phi = F_V$$
(2.14)

$$\partial_t W + (\nabla \cdot \mathbf{V}w) - g[(\alpha/\alpha_d)\partial_\eta p - \mu_d] = F_W$$
(2.15)

$$\partial_t \Theta + (\nabla \cdot \mathbf{V}\theta) = F_\Theta \tag{2.16}$$

$$\partial_t \mu_d + (\nabla \cdot \mathbf{V}) = 0 \tag{2.17}$$

$$\partial_t \phi + \mu_d^{-1} [(\mathbf{V} \cdot \nabla \phi) - gW] = 0 \qquad (2.18)$$

$$\partial_t Q_m + (\nabla \cdot \mathbf{V} q_m) = F_{Q_m} \tag{2.1}$$

 $\partial_{\eta}\phi = -\alpha_d \mu_d \tag{2.20}$

Skamarock et. al. "A description of the Advanced Research WRF Version 3" (2008) ^{s dry air}

$p = p_0 (R_d \theta_m / p_0 \alpha_d)^{\gamma}$

WRF details

3.1.1 Runge-Kutta Time Integration Scheme

Solve the equations

The RK3 scheme, described in Wicker and Skamarock (2002), integrates a set of ordinary differential equations using a predictor-corrector formulation. Defining the prognostic variables in the ARW solver as $\Phi = (U, V, W, \Theta, \phi', \mu', Q_m)$ and the model equations as $\Phi_t = R(\Phi)$, the RK3 integration takes the form of 3 steps to advance a solution $\Phi(t)$ to $\Phi(t + \Delta t)$:

UA medium res. model 5.4 km grid, SW US Global Horiz. Irradiance

UA medium res. model 5.4 km grid, SW US 10 m wind speed

UA high res. model 1.8 km grid, AZ and NM 10 m wind speed

Stronger mountain winds

Difference between 5.4 km and 1.8 km domains increases as weather becomes more severe

Solar power forecast from weather model

Wind power forecast from weather model

Weather forecasts are not perfect

UA-WRF vs. NWS HRRR Tucson GHI

Limit analysis to large (MAE > 60) errors.

Eliminates clear days.

Helps HRRR, relatively, since it is much worse than UA on clear days.

UA day 3 still outperforming NCEP HRRR

Sensor network forecast

Partnered with local PV installer Technicians for Sustainability to obtain access to real-time (5 min latency) data feeds from residential PV systems.

Prototype: Homebuilt irradiance sensors will cell modems (see A. Lorenzo, AMS 2015).

Network of rooftop solar data and irradiance sensors provides most accurate 30 minute forecasts.

Sensor network forecast

Looks a lot like a persistence forecast!

Combine data from many sensors using statistical methods

Lorenzo et. al., Solar Energy 2015

Sensor network interpolation

Satellite Derived Irradiance

Light reflected from the tops of clouds

VIS_20170119_2130

Light that gets through clouds

Ground irradiance data to improve satellite irradiance estimates

Satellite irradiance estimates rely on algorithms that convert the observation (light reflected by cloud tops) into transmitted irradiance.

Use ground PV and irradiance data to improve estimates

Unique method developed at UA

Published in Solar Energy (Lorenzo 2017)

Figure 1. Geometric relationship between the correlation coefficient R, the centered pattern RMS error E', and the standard deviations σ_f and σ_r , of the test and reference fields, respectively.

	А	В	С
MBE	0.00	0.02	0.01
MAE	0.10	0.09	0.12
RMSE	0.16	0.13	0.16
Correlation	0.49	0.53	—
Std. Dev.	0.15	0.07	0.00

$$RMSE^2 = \sigma_f^2 + \sigma_r^2 - 2\sigma_f\sigma_r R + MBE^2$$

The best forecast has1. The lowest error AND2. The same variance as the observed signal

PVLib Python

- Tool for modeling solar power systems
- Foundation of the UA power forecasts
- Open source
- Descendant of Sandia's PVLIB MATLAB
- Primarily coordinated by Will, with contributions from across the world.
- Solar power forecast module funded by EPRI and Southern Company
- github.com/pvlib

PVLIB Python statistics

Known users include:

- 1. Sandia National Lab
- 2. NREL
- 3. Sun Power
- 4. First Solar
- 5. NCAR
- 6. Fraunhofer ISE
- 7. Sunshine Analytics

- 8. Solar City
- 9. Itron
- 10. PV Performance Laboratories
- 11. Reiner Lemoine Institute
- 12. Strata Solar Services
- 13. Stuart Bowden (ASU)

PVLib Python forecasts

The problem: weather forecast data is a mess!

Model	GHI	DNI	Cloud cover
GFS, 0.5 deg	3/6 hr mixed interval average	None	3/6 hr mixed interval average
NAM, 12 km	1 hr for 36 hrs 3 hr for 84 hrs	None	1 hr for 36 hrs 3 hr for 84 hrs
RAP, 13 km	None	None	1 hr instant
UA-WRF, 1.8 km	3 min. instant	3 min. instant	None

A solution: standardized data processing in PVLib Python

PVLib Python forecasts

Get relevant weather forecast data in 5 lines of code

from pvlib.forecast import GFS, NAM, RAP, HRRR

```
lat, lon = 32.2, -110.9
```

```
start, end = pd.Timestamp('20171018'), pd.Timestamp('20171025')
```

```
fx_model = GFS()
```

fx_data = fx_model.get_processed_data(lat, lon, start, end)

1025′)

d)

PVLib Python forecasts

Convert your weather forecast into a power forecast in 5 lines of code

module_parameters = {'pdc0': 10.0, 'gamma_pdc': -0.0035}

system = SingleAxisTracker(module parameters=module parameters)

```
location = Location(lat, lon)
```

mc = ModelChain(system, location, **model_parameters)

mc.run_model(times=fx_data.index, weather=fx_data)

Single Axis Tracker PV Power Forecast from GFS Model

Single Axis Tracker PV Power Forecast from NAM Model

You too can be a forecaster!

- 1. Define your forecast problem
- Determine what's "good enough"
- 3. Select an appropriate forecast method and data set

If working in solar...

- 4. Use PVLib Python or PVLib Matlab for PV modeling
- 5. Help me make PVLIB better for everyone

Thanks to our funding agencies

Major support from

Additional support from

The SVERI utilities

Arizona Department of Environmental Quality