
PVLib-Python is an open source toolbox for PV modeling. PVLib
was originally developed at Sandia National Laboratories and 
has been expanded by contributions from members of the 
Photovoltaic Performance and Modeling Collaboration (PVPMC). 
The PVLib source code is hosted on GitHub. PVLib-Python and 
PVLib MATLAB are BSD 3-clause licensed. We encourage users 
to contribute the library at github.com/pvlib and ask questions 
on stackoverflow using the pvlib tag or on the mailing list.

In this paper, we use the PVLib-Python forecasting tool to create 
hourly average PV power forecasts for a fleet of utility scale 
power plants and we compare the forecasts to observed plant 
generation. As an example of the utility of PVLib-Python for 
creating benchmark forecasts, we compare the forecasts 
derived from NOAA weather models (GFS, NAM, and RAP) with 
forecasts derived from a model run by U. Arizona.
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Irradiance Forecast Data
The most critical component of a PV power forecast is the 
forecast of GHI. A GHI forecast can be obtained directly from a 
weather model forecast or it can be inferred from a model's 
cloud cover forecast. The suitability of each method depends on 
the parameterizations of the model, the data availability of the 
model, and the temporal resolution of the desired PV forecast. 
The table below shows irradiance and cloud cover model field 
data availability for the studied models. For NOAA models, this 
data only reflects availability on the NOMADS THREDDS server. 
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Results

location = Location(latitude=32.2, longitude=-110.9, altitude=700)
system = SingleAxisTracker(

module_parameters={'pdc0': 10.0, 'gamma_pdc': -0.0035})
system.peak_ac_power = 9.0
mc = ModelChain(system, location, orientation_strategy=None,               

dc_model='pvwatts', ac_model='pvwatts’,
aoi_model='physical', spectral_model='no_loss',
temp_model='sapm', losses_model='no_loss')

fx_model = GFS()
for fx_file in nomads_files:

fx_data = pd.read_csv(fx_file)
fx_data = fx_data.resample('5min').interpolate()
fx_data = fx_model.process_data(fx_data)
mc.run_model(fx_data.index, weather=fx_data)
ac = mc.ac.clip_upper(system.peak_ac_power)
ac = ac.resample('1h', label='right').mean()

We compared the accuracy of all of the NOAA forecast models as a 
function of the forecast horizon. Times at which any forecast was 
missing were removed from the comparative analyses. 

Name GHI DNI
GFS-CC NAM	cloud cover	+	Larson GHI	+	DISC
UA-DISC WRF GHI	+	DISC
UA WRF	+	Aeronet WRF	+	Aeronet
NAM-CC NAM	cloud cover	+	Larson GHI	+	DISC
NAM-GHI NAM	GHI GHI	+	DISC
RAP-CC RAP	cloud	cover	+	Larson GHI	+	DISC

The table below summarizes the combinations of weather model 
data and processing algorithms studied in this paper.

Model GHI DNI Cloud	cover
GFS,	0.5 deg 3/6	hr mixed	

interval	average
None 3/6	hr mixed	

interval	average
NAM, 12	km 1	hr for 36	hrs

3	hr for 84	hrs
None 1	hr for 36	hrs

3	hr for 84	hrs
RAP,	13	km None None 1	hr instant
UA-WRF,	1.8	km 3	min.	instant 3	min.	instant None

For the NOAA models studied here, we use a model proposed 
by Larson et. al. to calculate GHI from cloud cover forecasts:

ghi = (offset + (1 - offset) * (1 - cloud_cover)) * ghi_clear

where offset=0.35, cloud_cover is the total cloud cover, and 
ghi_clear is determined by PVLib’s climatological clear sky 
model. The DISC model is then used to calculate DNI and DHI.

We post-processed the UA-WRF model's irradiance forecasts 
using measurements of the previous day's average aerosol 
optical depth obtained from the Aeronet site in Tucson, AZ, 
according to the equations below.

We linearly interpolate the model forecast data from its native 
resolution to 5 minute resolution. For the GFS, NAM, and RAP 
models we use the Larson and the DISC model to determine a 
forecast GHI, DNI, and DHI. For the NAM model, we also create 
forecasts directly from its GHI forecasts. 

Fig. 1. Irradiance derived from 3 hourly GFS cloud cover (top) and UA (bottom) models. 
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Forecasting PV Power

We created forecasts for six PV systems in Arizona. The systems 
included three single axis trackers (63 MW AC), and three fixed tilt 
systems (14 MW AC). Five of the six systems are located near 
Tucson, Arizona. Aggregate forecasts are shown in Fig. 2.

To model PV generation for each system, we used PVWatts with a 
DC nameplate capacity and temperature coefficient. We also 
imposed a maximum AC capacity parameter to account for 
inverter clipping. We determined system parameters by manually 
optimizing forecast model performance for clear days. 

Fig. 2. Four days of PV generation (black) and forecasts (colors) derived from the GFS, 
NAM, RAP, and UA-WRF models using cloud cover (CC) or irradiance forecasts. 

Fig. 3. NOAA models Aug–Dec 2016 Fig. 4. GFS, UA models Jan–Dec 2016 

Next, we examined forecast accuracy as a function of month of year. 
Figure 5 shows the accuracy of each method for each month. The 
model errors exhibit similar trends, with some outliers. For most 
models, forecast accuracy is worse June through September, and 
best in May and November.

These results led us to 
examine the relationship 
between forecast accuracy 
and clear sky condition. 
We used PVLib's
detect_clear function to 
determine if a minute is 
clear or not, summed the 
number of cloudy minutes 
in each month, and 
normalized by the number 
of daylight minutes. 
Relatively clear months 
have lower errors (Fig 6).

Fig. 5. Forecast errors for each month of the study period

Fig. 6. Forecast errors vs. % cloudy 
minutes/month


