
An Open Source Solar Power Forecasting Tool Using

PVLIB Python

William F. Holmgren1, Derek G. Groenendyk2

https://github.com/pvlib/pvlib-python

Adding forecasts to PVLIB Python
Solar power forecast methods continue to be developed at a

rapid pace. We propose that both public and private solar power

forecasters will benefit from standardized, open source,

reference implementations of forecast methods that use publicly

available data.

PVLIB and Python are natural choices for developing an open

source tool that combines weather forecasts and PV models.

Python is easy to read and write, portable across platforms, free

and open source, and it has a large scientific computing

community. Python has also been identified by Unidata as a key

technology for geosciences.

We chose to use Unidata’s Siphon library to easily and

programmatically download geosciences data in Python. The

Siphon library provides access to a Unidata THREDDS server

that hosts forecasts from the Global Forecast System (GFS),

North American Model (NAM), High Resolution Rapid Refresh

(HRRR), Rapid Refresh (RAP), and National Digital Forecast

Database (NDFD). Siphon and THREDDS simplify the process

of obtaining a time series forecast for a point or subdomain of a

forecast model.

The PVLIB Toolbox is an open source MATLAB and Python

library for photovoltaic modeling and analysis. PVLIB was

originally developed at Sandia National Laboratories and has

been expanded by contributions from members of the

Photovoltaic Performance and Modeling Collaboration (PVPMC).

The PVLIB source code is hosted on GitHub. PVLIB Python and

PVLIB MATLAB are BSD 3-clause licensed and free for

commercial use. We encourage all users to contribute to

improving the library.

Introduction to PVLIB

The authors gratefully acknowledge Sandia National Laboratories for the initial development of PVLIB MATLAB and PVLIB Python and the

ongoing contributions of many others to the project. A list of PVLIB Python contributors may be found on the GitHub repository and in the

online documentation. The authors also thank the developers and maintainers of the NOAA/NCEP/NWS forecasts. WFH thanks the

Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) Postdoctoral Research Award for support.

Acknowledgements

Forecast module structure
We model forecasts using a base ForecastModel class and a

series of subclasses corresponding to each of the supported

weather models. ForecastModel defines the data retrieval and

basic processing methods. Each subclass may redefine its own

combination of the processing steps. The result is a consistent

API for all weather models that makes analyzing the data easier

and less error-prone. Users can easily create new classes and

modify the existing classes. ForecastModel

GFS NAM HRRR RAP NDFD Fig. 3: PVLIB Python forecasts of AC power for a

hypothetical single axis tracker in Portland, OR for 12:00

May 31 – 12:00 June 3, 2016. The power forecasts are

derived from 5 different weather forecasts.

module = sandia_modules['Canadian_Solar_CS5P_220M___2009_']
inverter = cec_inverters['SMA_America__SC630CP_US_315V__CEC_2012_']
system = SingleAxisTracker(module_parameters=module,

inverter_parameters=inverter, series_modules=15, parallel_modules=300)
lat, lon, tz = 45.5, -122.7, 'Etc/GMT+8’ # Portland, OR
start = pd.Timestamp(datetime.date.today(), tz=tz)
end = start + pd.Timedelta(days=7) # 7 days from today
for fx_class in [GFS, NAM, HRRR, RAP, NDFD]:

fx_model = fx_class()
fx_data = fx_model.get_processed_data(lat, lon, start, end)
irradiance = fx_data[['ghi', 'dni', 'dhi']]
weather = fx_data[['wind_speed', 'temp_air']]
mc = ModelChain(system, fx_model.location)
mc.run_model(fx_data.index, irradiance=irradiance, weather=weather)
mc.ac.plot()

PVLIB Python provides standardized, yet extensible, classes for PV system

modeling. Users can represent a system with a PVSystem or a

SingleAxisTracker object, a simulation using a ModelChain object, and

drive the simulation using downloaded and processed forecast data.

simplified code
class ForecastModel():

def get_data()
def process_data()
def get_processed_data()
def uv_to_speed()
def cloud_cover_to_irradiance()

class GFS(ForecastModel):
def init():

self.variables = {# GFS-specific name map}
def process_data(data, cloud_cover='total_clouds', **kwargs):

data = super(GFS, self).process_data(data)
data['temperature'] = self.kelvin_to_celsius(data)
data['wind_speed'] = self.uv_to_speed(data)
data = self.cloud_cover_to_irradiance(data)

Accessing model data
Forecast data can be accessed using the get_data method of

a forecast model object.

1Dept. of Atmospheric Sciences, Univ. of Arizona, Tucson, AZ; 2Dept. of Hydrology, Univ. of Arizona, Tucson, AZ

lat, lon, tz = 45.5, -122.7, 'Etc/GMT+8’ # Portland, OR
start = pd.Timestamp.now(tz=tz)
end = start + pd.Timedelta(days=7)
model = GFS()
raw_data = model.get_data(lat, lon, start, end)

PV power forecasts

Fig. 2: Standardized PVLIB Python weather data for Portland, OR

from the 2016-06-01 12Z GFS model run.

Fig. 1: Forecast model class

inheritance diagram.

The raw data can be processed into a standard format using the

model’s process_data method.

processed_data = model.process_data(raw_data)

In the GFS example shown here, process_data converts

temperature from Kelvin to Celsius, calculates radiation

components from total cloud cover using the Liu Jordan model,

and calculates wind speed from the u and v wind components.

