Intra-hour solar power forecasts using a real-time irradiance monitoring network

Antonio T. Lorenzo, William F. Holmgren, Michael Leuthold, Chang Ki Kim, Alexander D. Cronin, Eric A. Betterton
Departments of Physics and Atmospheric Sciences, University of Arizona

/X, THE UNIVERSITY OF ARIZONA.
M t . t . M th d Toggle 1 day /3 day view Home Help
O lva lon e O S Aggregate plots EMS data csv files Irradiance sensors Rooftop PV Environmental data Maps Other resources
MS aggregate 01/03/15 16:17:05 G aggregate 01/03/15 1

® Intra-hour solar power forecasts can help electric utilities schedule 1. Irradiance data are gathered from a database and normalized by clear-sky profiles to produce clear-
regulating reserves, optimize short-term energy trading, and manage sky 1ndices for each sensor.
grid-connected batteries for ramp-rate avoidance. . An mterpolated map ot clear-sky index (cloud opacity) 1s produced for the Tucson area.
. Cloud velocity 1s estimated by analyzing WRF forecast output or radiosonde data.
. The clear-sky index map 1s shifted based on forecast time horizon and estimated cloud velocity.
. The clear-sky index at a location of interest on the shifted map 1s multiplied by an appropriate
clear-sky profile to produce an irradiance or solar power forecast.

e However, some intra-hour forecasting methods develop errors during
conversion from pixel brightness to irradiance. Some also require large
sets of training data. Our network method overcomes these challenges
with 1irradiance measurements and a physical model of cloud motion.
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e Forecasts based on our network of irradiance sensors perform better
than the benchmark persistence model for forecast horizons greater
than 1 minute. Results

The network forecasts are based on the 1dea that time-series of two sensors that are spatially separated

lag/lead each other when the cloud velocity vector 1s properly oriented. Figure . A scre-capture of the live ebsite rvided to
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® Solar powered 1rradiance sensors with cellular network backhaul were
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--------- Data from three months (April, May, June) on cloudy days 1gnoring nighttime values were analyzed. ¢ Cloud-motion on most days is too complicated and/or
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existing and planned weather stations for resource
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PV systems in Tucson, AZ.
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