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nabu is a tool designed to process data in parallel on 

distributed machines using Python. It will be used to generate 

operational solar and wind power forecast for electric utility 

companies in the Southwest US. These forecasts cover five 

minutes to seven days in the future requiring a blending of 

short-term, statistical forecasts with long-term, NWP forecasts,  

and forecasts will be regenerated every five minutes. The 

current forecast system relies on a large, monolithic python 

program that consumes 10 GB of memory and may take five 

minutes to produce forecasts (and plots). nabu will consume a 

fraction of the memory and wall time while also being easier to 

develop and debug. 

Simplified Example Goals 

• Written in a functional style to improve reproducibility and make the program easier to understand 

• Uses Dask.distributed which generates an optimized execution graph that can be executed on workers 

on many different machines with minimal modification to a serial code 

• Utilizes Dask graphs to store provenance information for how a given forecast was generated 

• Relies on a REST data API that enables access to raw data from nearly any host (an NFS server/mount 

would also work) 

• Generate blended power forecasts 

for ~50 solar and wind power 

plants along with aggregates for 

forecasts horizons from 5 minutes 

to 7 days 

• Update forecasts every 5 minutes  

• Leverage multi-core CPUs and a 

GPU to produce forecasts quickly 

• Make the forecast generation code 

easy to understand, extend, and 

debug 

• Make the forecast generation chain 

reproducible 

Helpful Tips 

• Make sure NetCDF4/HDF5 files are chunked in the shape that best fits your 

access pattern. In our case, compression and re-chunking reduced the time 

it takes to retrieve a point forecast from a WRF NetCDF from almost a 

minute to tens of milliseconds 

• The msgpack format with blosc compression is a fast serialization type for 

many python objects 

Sponsors and Partners 

from dask import delayed 

from distributed import Client 

 

 

import requests 

import pandas as pd 

from pvlib.modelchain import ModelChain 

from pvlib.pvsystem import retrieve_sam 

from pvlib.tracking import SingleAxisTracker 

from pvlib.location import Location 

 

 

@delayed 

def get_observations(params): 

    """Go and get the observation data from the api""" 

    return requests.get('http://127.0.0.1/observations',  

                        params=params) 

 

@delayed 

def get_wrf_forecasts(params): 

    """Get the WRF forecasts from the api""" 

    return requests.get('http://127.0.0.1/wrf',  

          params=params) 

 

@delayed 

def get_satellite_data(params): 

    """Get the satellite image from the api""" 

    return requests.get('http://127.0.0.1/sat', params=params) 

 

@delayed 

def compute_power_fx(index, irradiance, weather): 

    """ 

    Compute the power output of a single axis tracking 

    solar power plant using pvlib and the irradiance 

    and weather data 

    """ 

    location = Location(32.1, -110.8, 'MST', 800, 'Tucson') 

    module = retrieve_sam('sandiamod')[ 

        'Canadian_Solar_CS5P_220M___2009_'] 

    inverter = retrieve_sam('cecinverter')[ 

        'SMA_America__SC630CP_US_315V__CEC_2012_'] 

    system = SingleAxisTracker( 

        module_parameters=module, inverter_parameters=inverter, 

        modules_per_string=15, strings_per_inverter=300) 

    mc = ModelChain(system, location) 

    mc.run_model(index, irradiance=irradiance, weather=weather) 

    return mc.ac 

 

@delayed 

def compute_persistence(observations, fx_index): 

    """Compute a persistence forecast from the observations""" 

    return pd.Series(observations.iloc[-1], index=fx_index) 

@delayed 

def compute_satellite_fx(sat_obs): 

    """ 

    Compute a forecast given the latest satellite image.  

    Parts of this rely heavily on linear algebra that 

    can be done in 1/10 the time on a GPU if available. 

    """ 

    return lots_of_matrix_manipulation() 

 

@delayed 

def make_the_combined_forecast(wrf_fx, sat_fx, persistence_fx): 

    """ 

    Combine the forecasts that have different optimal forecast  

    horizons in a smart way. 

    """ 

    return some_clever_combination() 

 

@delayed 

def save(combined_fx): 

    """ 

    Post the optimally combined forecast to the central API  

    for storage and dissemination 

    """ 

    requests.post('http://127.0.0.1/forecast', 

                  data={'forecast': combined_fx}) 

# Put it everything together, no processing or data collection  

# occurs yet 

obs = get_observations({'id': 100}) 

wrf_fx = get_wrf_forecasts({'model': 'UAGFS'}) 

sat_obs = get_satellite_data({'satellite': 'GOES-W'}) 

persistence_fx = compute_persistence(obs, wrf_fx.index) 

wrf_power_fx = compute_power_fx(wrf_fx.index,  

                                wrf_fx.irradiance, 

                                wrf_fx.weather) 

sat_fx = compute_satellite_fx(sat_obs) 

sat_power_fx = compute_power_fx(wrf_fx.index,  

                                sat_fx.irradiance,  

                                wrf_fx.weather) 

combined_fx = make_the_combined_forecast(wrf_power_fx,  

                                         sat_power_fx,  

                                         persistence_fx) 

final = save(combined_fx) 

 

# Now go ahead and run everything on our already setup 

# dask.distributed workers and scheduler 

# First connect to the scheduler that's already running 

dask_client = Client('127.0.0.1:8686') 

# Now go ahead and compute while making sure that the  

# satellite forecast is computed by a worker with  

# access to a GPU 

dask_client.compute(final, workers={(sat_fx): 'GPU Worker'}) 

A simplified example of how 

nabu processes data is shown 

to the right. We define functions 

that get the data from the REST 

API, compute a solar power 

forecast from irradiance and 

weather data, compute a 

persistence forecast, compute a 

satellite image forecast, and 

combine the forecasts together 

then save the result. Each 

function is called in the blue 
box, but the @delayed ensu-

res no computation is performed 
until the client.compute 

command. This command gen-

erates the computation graph 

shown below and sends it to the 

Dask.distributed scheduler. The 

scheduler assigns the tasks 

(nodes on the graph) to other 

worker processes intelligently to 

reduce data transfers between 

workers. We also specify that a 

worker with access to a GPU 

should be assigned the task to 

generate satellite forecasts. 

https://forecasting.energy.arizona.edu 


