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Adding forecasts to PVLIB Python
Solar power forecast methods continue to be developed at a 
rapid pace. We propose that both public and private solar power 
forecasters will benefit from standardized, open source, 
reference implementations of forecast methods that use publicly 
available data.

PVLIB and Python are natural choices for developing an open 
source tool that combines weather forecasts and PV models. 
Python is easy to read and write, portable across platforms, free 
and open source, and it has a large scientific computing 
community. Python has also been identified by Unidata as a key 
technology for geosciences.

We chose to use Unidata’s Siphon library to easily and 
programmatically download forecast data in Python. The Siphon 
library provides access to a Unidata THREDDS server that hosts 
forecasts from the Global Forecast System (GFS), North 
American Model (NAM), High Resolution Rapid Refresh (HRRR), 
Rapid Refresh (RAP), and National Digital Forecast Database 
(NDFD). Siphon and THREDDS simplify the process of obtaining 
a time series forecast for a point or subdomain of a forecast 
model. A script is also available for downloading the relevant 
point data from NOMADS, creating a time series, and exporting 
it to csv (see github.com/wholmgren/get_nomads).

The PVLIB Toolbox is an open source MATLAB and Python 
library for photovoltaic modeling and analysis. PVLIB was 
originally developed at Sandia National Laboratories and has 
been expanded by contributions from members of the 
Photovoltaic Performance and Modeling Collaboration (PVPMC). 
The PVLIB source code is hosted on GitHub. PVLIB Python and 
PVLIB MATLAB are BSD 3-clause licensed and free for 
commercial use. We encourage users to contribute the library at 
github.com/pvlib and ask questions on stackoverflow.com using 
the pvlib tag.

Introduction to PVLIB
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Forecast module structure
We model forecasts using a base ForecastModel class and a 
series of subclasses corresponding to each of the supported 
weather models. ForecastModel defines the data retrieval and 
basic processing methods. Each subclass may redefine its own 
combination of the processing steps. The result is a consistent 
API for all weather models that makes analyzing data easier and 
less error-prone. Users can easily create new classes and 
modify the existing classes.

ForecastModel
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Fig. 3: PVLIB Python forecasts of AC power for a 
hypothetical single axis tracker in Portland, OR for 
12:00 May 31 – 12:00 June 3, 2016. The power 
forecasts are derived from 5 different weather 
forecasts. 

module = sandia_modules['Canadian_Solar_CS5P_220M___2009_']
inverter = cec_inverters['SMA_America__SC630CP_US_315V__CEC_2012_']
system = SingleAxisTracker(module_parameters=module,

module_parameters=module, inverter_parameters=inverter, 
modules_per_string=15, strings_per_inverter=300)

lat, lon, tz = 45.5, -122.7, 'Etc/GMT+8’ # Portland, OR
start = pd.Timestamp(datetime.date.today(), tz=tz)
end = start + pd.Timedelta(days=7) # 7 days from today
for fx_class in [GFS, NAM, HRRR, RAP, NDFD]:

fx_model = fx_class()
fx_data = fx_model.get_processed_data(lat, lon, start, end)
mc = ModelChain(system, fx_model.location)
mc.run_model(fx_data.index, weather=fx_data)
mc.ac.plot()

PVLIB Python provides standardized, yet extensible, classes for PV system 
modeling. Users can represent a PV system with a PVSystem or a 
SingleAxisTracker object, a simulation using a ModelChain object, and 
drive the simulation using downloaded and processed forecast data. The 
example below uses the Sandia Array Performance Model to forecast the 
power generation of one inverter of a utility-scale power plant. A PV forecast 
is created for each of the weather models supported in PVLIB.

# simplified code
class ForecastModel():

def get_data()
def process_data()
def get_processed_data()
def uv_to_speed()
def cloud_cover_to_irradiance()

class GFS(ForecastModel):
def init():

self.variables = {# GFS-specific name map}
def process_data(data, cloud_cover='total_clouds', **kwargs):

data = super(GFS, self).process_data(data)
data['temperature'] = self.kelvin_to_celsius(data)
data['wind_speed'] = self.uv_to_speed(data)
data = self.cloud_cover_to_irradiance(data)

Accessing and processing weather model data
Forecast data can be accessed using the get_data method of a 
forecast model object.
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lat, lon, tz = 45.5, -122.7, 'Etc/GMT+8’ # Portland, OR
start = pd.Timestamp.now(tz=tz)
end = start + pd.Timedelta(days=7)
model = GFS()
raw_data = model.get_data(lat, lon, start, end)

PV power forecasts from multiple forecast models

Fig. 2: Standardized PVLIB Python weather data for Portland, OR 
from the 2016-06-01 12Z GFS model run. PVLIB was used to 
download forecast data from the Unidata THREDDS server, rename 
fields, calculate wind speed, and derive irradiance from cloud cover.

Fig. 1: Forecast model class 
inheritance diagram.

The raw data can be processed into a standard format (see 
right) using the model’s process_data method. 
processed_data = model.process_data(raw_data)

In the GFS example shown here, process_data converts 
temperature from Kelvin to Celsius, calculates irradiance 
components from total cloud cover, and calculates wind speed 
from the u and v wind components. The process_data method is 
slightly different for each weather model.

The most critical component of the process is converting cloud 
cover into irradiance. By default, the following equation from 
Larson, Nonnenmacher, and Coimbra (2015) is used:

ghi = (offset + (1 - offset) * (1 - cloud_cover)) * ghi_clear

where offset=0.35, cloud_cover is the total cloud cover, and 
ghi_clear is determined by PVLIB’s climatological clear sky 
model. Forecasters may experiment with different parameters. 
The DISC model is then used to calculate DNI and DHI.

Forecast verification

location = Location(latitude=32.2, longitude=-110.9, altitude=700)
system = SingleAxisTracker(

module_parameters={'pdc0': 32.5, 'gamma_pdc': -0.0035})
system.peak_ac_power = 26.5
mc = ModelChain(system, location, orientation_strategy=None,               

dc_model='pvwatts', ac_model='pvwatts’,
aoi_model='physical', spectral_model='no_loss',
temp_model='sapm', losses_model='no_loss')

fx_model = GFS()
for fx_file in nomads_files:

fx_data = pd.read_csv(fx_file)
fx_data = fx_data.resample('5min').interpolate()
fx_data = fx_model.process_data(fx_data)
mc.run_model(fx_data.index, weather=fx_data)
ac = mc.ac.clip_upper(system.peak_ac_power)
ac = ac.resample('1h', label='right').mean()

We compared PVLIB Python forecasts to observations for 3 
months of data for a 25 MW single axis tracker near Tucson, AZ. 
We chose to use a simple PV model (NREL’s PVWATTS) in which 
the only required parameters are DC nameplate capacity, 
temperature coefficient, and maximum AC capacity. We 
resampled 3 hour data from the GFS model to 5 minutes, applied 
the PVLIB GFS processing functions, the PVLIB PV modeling 
tools, and finally compared 1 hour average forecasts and data.

The mean bias error and mean absolute error of the GFS+PVLIB 
forecasts for daylight hours are shown above. The forecasts 
based only on total cloud cover, temperature, and wind speed 
demonstrate periods of success and failure. Still, the simplicity 
and standardization of the forecast generation may make the tool 
valuable for benchmarking more sophisticated forecast models. 

Hours	03-24 Hours	24-48 Hours	48-72
MBE	(MW) -0.4 -0.1 -0.1
MAE	(MW) 2.5 2.4 3.0

Fig. 4: Observations and forecasts for a single axis tracker in Tucson, AZ.


