
An Open Source Solar Power Forecasting Tool Using PVLIB Python
William F. Holmgren1, Antonio T. Lorenzo2, and Derek G. Groenendyk1

https://github.com/pvlib/pvlib-python

Adding forecasts to PVLIB Python
Solar power forecast methods continue to be developed at a
rapid pace. We propose that both public and private solar power
forecasters will benefit from standardized, open source,
reference implementations of forecast methods that use publicly
available data.

PVLIB and Python are natural choices for developing an open
source tool that combines weather forecasts and PV models.
Python is easy to read and write, portable across platforms, free
and open source, and it has a large scientific computing
community. Python has also been identified by Unidata as a key
technology for geosciences.

We chose to use Unidata’s Siphon library to easily and
programmatically download forecast data in Python. The Siphon
library provides access to a Unidata THREDDS server that hosts
forecasts from the Global Forecast System (GFS), North
American Model (NAM), High Resolution Rapid Refresh (HRRR),
Rapid Refresh (RAP), and National Digital Forecast Database
(NDFD). Siphon and THREDDS simplify the process of obtaining
a time series forecast for a point or subdomain of a forecast
model. A script is also available for downloading the relevant
point data from NOMADS, creating a time series, and exporting
it to csv (see github.com/wholmgren/get_nomads).

The PVLIB Toolbox is an open source MATLAB and Python
library for photovoltaic modeling and analysis. PVLIB was
originally developed at Sandia National Laboratories and has
been expanded by contributions from members of the
Photovoltaic Performance and Modeling Collaboration (PVPMC).
The PVLIB source code is hosted on GitHub. PVLIB Python and
PVLIB MATLAB are BSD 3-clause licensed and free for
commercial use. We encourage users to contribute the library at
github.com/pvlib and ask questions on stackoverflow.com using
the pvlib tag.

Introduction to PVLIB

We gratefully acknowledge the Electric Power Research Institute, Tucson Electric Power, and Arizona Public Service for funding. WFH thanks the Department of Energy (DOE) Office of Energy Efficiency and
Renewable Energy (EERE) Postdoctoral Research Award for support. We thank Sandia National Laboratories for the initial development of PVLIB and the ongoing contributions of many others to the project. A list of
PVLIB Python contributors may be found online. We also thank the developers and maintainers of the NOAA forecasts, the Unidata THREDDS service, and the Unidata Siphon project.

Acknowledgements

Forecast module structure
We model forecasts using a base ForecastModel class and a
series of subclasses corresponding to each of the supported
weather models. ForecastModel defines the data retrieval and
basic processing methods. Each subclass may redefine its own
combination of the processing steps. The result is a consistent
API for all weather models that makes analyzing data easier and
less error-prone. Users can easily create new classes and
modify the existing classes.

ForecastModel

GFS NAM HRRR RAP NDFD
Fig. 3: PVLIB Python forecasts of AC power for a
hypothetical single axis tracker in Portland, OR for
12:00 May 31 – 12:00 June 3, 2016. The power
forecasts are derived from 5 different weather
forecasts.

module = sandia_modules['Canadian_Solar_CS5P_220M___2009_']
inverter = cec_inverters['SMA_America__SC630CP_US_315V__CEC_2012_']
system = SingleAxisTracker(module_parameters=module,

module_parameters=module, inverter_parameters=inverter,
modules_per_string=15, strings_per_inverter=300)

lat, lon, tz = 45.5, -122.7, 'Etc/GMT+8’ # Portland, OR
start = pd.Timestamp(datetime.date.today(), tz=tz)
end = start + pd.Timedelta(days=7) # 7 days from today
for fx_class in [GFS, NAM, HRRR, RAP, NDFD]:

fx_model = fx_class()
fx_data = fx_model.get_processed_data(lat, lon, start, end)
mc = ModelChain(system, fx_model.location)
mc.run_model(fx_data.index, weather=fx_data)
mc.ac.plot()

PVLIB Python provides standardized, yet extensible, classes for PV system
modeling. Users can represent a PV system with a PVSystem or a
SingleAxisTracker object, a simulation using a ModelChain object, and
drive the simulation using downloaded and processed forecast data. The
example below uses the Sandia Array Performance Model to forecast the
power generation of one inverter of a utility-scale power plant. A PV forecast
is created for each of the weather models supported in PVLIB.

simplified code
class ForecastModel():

def get_data()
def process_data()
def get_processed_data()
def uv_to_speed()
def cloud_cover_to_irradiance()

class GFS(ForecastModel):
def init():

self.variables = {# GFS-specific name map}
def process_data(data, cloud_cover='total_clouds', **kwargs):

data = super(GFS, self).process_data(data)
data['temperature'] = self.kelvin_to_celsius(data)
data['wind_speed'] = self.uv_to_speed(data)
data = self.cloud_cover_to_irradiance(data)

Accessing and processing weather model data
Forecast data can be accessed using the get_data method of a
forecast model object.

1Dept. of Hydrology and Atmospheric Sciences, 2College of Optical Sciences, Univ. of Arizona, Tucson, AZ

lat, lon, tz = 45.5, -122.7, 'Etc/GMT+8’ # Portland, OR
start = pd.Timestamp.now(tz=tz)
end = start + pd.Timedelta(days=7)
model = GFS()
raw_data = model.get_data(lat, lon, start, end)

PV power forecasts from multiple forecast models

Fig. 2: Standardized PVLIB Python weather data for Portland, OR
from the 2016-06-01 12Z GFS model run. PVLIB was used to
download forecast data from the Unidata THREDDS server, rename
fields, calculate wind speed, and derive irradiance from cloud cover.

Fig. 1: Forecast model class
inheritance diagram.

The raw data can be processed into a standard format (see
right) using the model’s process_data method.
processed_data = model.process_data(raw_data)

In the GFS example shown here, process_data converts
temperature from Kelvin to Celsius, calculates irradiance
components from total cloud cover, and calculates wind speed
from the u and v wind components. The process_data method is
slightly different for each weather model.

The most critical component of the process is converting cloud
cover into irradiance. By default, the following equation from
Larson, Nonnenmacher, and Coimbra (2015) is used:

ghi = (offset + (1 - offset) * (1 - cloud_cover)) * ghi_clear

where offset=0.35, cloud_cover is the total cloud cover, and
ghi_clear is determined by PVLIB’s climatological clear sky
model. Forecasters may experiment with different parameters.
The DISC model is then used to calculate DNI and DHI.

Forecast verification

location = Location(latitude=32.2, longitude=-110.9, altitude=700)
system = SingleAxisTracker(

module_parameters={'pdc0': 32.5, 'gamma_pdc': -0.0035})
system.peak_ac_power = 26.5
mc = ModelChain(system, location, orientation_strategy=None,

dc_model='pvwatts', ac_model='pvwatts’,
aoi_model='physical', spectral_model='no_loss',
temp_model='sapm', losses_model='no_loss')

fx_model = GFS()
for fx_file in nomads_files:

fx_data = pd.read_csv(fx_file)
fx_data = fx_data.resample('5min').interpolate()
fx_data = fx_model.process_data(fx_data)
mc.run_model(fx_data.index, weather=fx_data)
ac = mc.ac.clip_upper(system.peak_ac_power)
ac = ac.resample('1h', label='right').mean()

We compared PVLIB Python forecasts to observations for 3
months of data for a 25 MW single axis tracker near Tucson, AZ.
We chose to use a simple PV model (NREL’s PVWATTS) in which
the only required parameters are DC nameplate capacity,
temperature coefficient, and maximum AC capacity. We
resampled 3 hour data from the GFS model to 5 minutes, applied
the PVLIB GFS processing functions, the PVLIB PV modeling
tools, and finally compared 1 hour average forecasts and data.

The mean bias error and mean absolute error of the GFS+PVLIB
forecasts for daylight hours are shown above. The forecasts
based only on total cloud cover, temperature, and wind speed
demonstrate periods of success and failure. Still, the simplicity
and standardization of the forecast generation may make the tool
valuable for benchmarking more sophisticated forecast models.

Hours	03-24 Hours	24-48 Hours	48-72
MBE	(MW) -0.4 -0.1 -0.1
MAE	(MW) 2.5 2.4 3.0

Fig. 4: Observations and forecasts for a single axis tracker in Tucson, AZ.

