Forecasting Global Horizontal Irradiance Using the LETKF and a Combination of Adveted Satellite Images and Sparse Ground Sensors

Travis M. Harty*, Antonio T. Lorenzo*, Matthias Morzfeld‡, William F. Holmgren*
Program in Applied Mathematics*, Department of Mathematics‡, Department of Hydrology & Atmospheric Sciences*, University of Arizona

Summary

Motivation: Intra-hour irradiance forecasts are required for integrating PV power into the electrical grid.

Idea: We combine satellite derived irradiance estimates with a cloud motion field in a data assimilation framework to create intra-hour irradiance forecasts.

Results: Combining cloud motion information from numerical weather prediction, optical flow, and satellite images can improve irradiance forecasts by 22% for 45 minute forecasts.

Previous work: satellite images & ground data

Normalized irradiance data are derived from two sources: geostationary satellite images and ground irradiance measurements from sensors and PV systems.

Ensemble forecasting system

- Ensemble includes irradiance and cloud motion fields.
- The Local Ensemble Transform Kalman Filter (LETKF) is used to reduce computational cost with a large state and small ensemble number [2].
- Irradiance fields are perturbed using a smooth random field targeting clouds in order to increase the ensemble variance.
- Data assimilation introduces additional divergence.
- Divergence is removed by solving Poisson’s equation.

Data Availability

Initial Ensemble
Advection
Background Ensemble
Assimilation
Analysis Ensemble

Error is reduced by 15%, 20%, and 22% for forecast horizons of 15, 30, and 45 minutes for the day shown here (5/29/2014).

References

Forecasting irradiance

- An advection model is used to create forecasts from the satellite derived irradiance field, \(\mathbf{I} \), a two dimensional scalar field.
- This advection model requires a two dimensional vector field known as a cloud motion field, \(\mathbf{C} \).

\[
\frac{\partial \mathbf{I}}{\partial t} = - \nabla \cdot (\mathbf{C} \mathbf{I})
\]

- When forecasting only irradiance over short time scales (intra-hour) it is advantageous to use a simplified model rather than a full numerical weather model due to lower computational cost and ease of data assimilation.
- The forecasts produced by this model are sensitive to errors in the initial irradiance estimate and the cloud motion field.

This material is based upon work supported by Tucson Electric Power, Arizona Public Service, the National Science Foundation under grant DMS-1619630, the Alfred P. Sloan Foundation, and by the Program in Applied Mathematics. Email inquiries to travisharty@math.arizona.edu.