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Abstract—We used the open-source PVLib-Python library to
create PV power forecasts for a fleet of utility scale power plants
and assessed their accuracies. PVLib-Python allows users to
easily retrieve standardized weather forecast data relevant to PV
power modeling from NOAA models including the GFS, NAM,
RAP, HRRR, and the NDFD. A PV power forecast can then be
obtained using the weather data as inputs to the comprehensive
modeling capabilities of PVLib-Python. We used these models
to benchmark the performance of the University of Arizona’s
configuration of the Weather Research and Forecasting model.
Standardized, open source, reference implementations of forecast
methods using publicly available data may help advance the state-
of-the-art of solar power forecasting.

Index Terms—forecasting, performance modeling, PV model-
ing, software

I. INTRODUCTION

PVLib-Python is an open source toolbox for PV modeling
[1], [2]. Holmgren et. al. developed a forecasting module for
PVLib-Python to help the PV modeling community create
benchmark solar power forecasts [3]. In this paper, we use the
PVLib-Python forecasting tool to create hourly average PV
power forecasts for a fleet of utility scale power plants and
we compare the forecasts to observed plant generation. We
compare the forecasts derived from NOAA weather models,
including the GFS, NAM, and RAP with forecasts derived
from a high resolution mesoscale model run by the University
of Arizona.

II. IRRADIANCE FORECAST DATA

The most critical component of a PV power forecast is the
forecast of global horizontal irradiance (GHI). A GHI forecast
can be obtained directly from a weather model forecast or it
can be inferred from a model’s cloud cover forecast [4]. The
suitability of each method depends on the parameterizations of
the model, the data availability of the model, and the temporal
resolution of the desired PV forecast. Parameterization issues
include the accuracy of the solar position equation and the
impact of aerosols in their radiative transfer algorithms [5].
Model data availability and temporal resolution depends on the
data source. The PVLib-Python forecast module described by
Holmgren et. al. [3] accesses forecast data from the Unidata
THREDDS server. However, the Unidata THREDDS server
currently only hosts the most recent 2 weeks of forecast
model output. To study a longer period of time, we wrote
a Python script to download the relevant point forecast data
from the NOAA NOMADS THREDDS data service [6]. Table
I describes the model variable data availability and temporal

TABLE I
IRRADIANCE AND CLOUD COVER MODEL FIELD DATA AVAILABILITY. FOR

NOAA MODELS, THIS DATA ONLY REFLECTS AVAILABILITY ON THE
NOMADS THREDDS SERVER. OTHER NOAA DATA SOURCES MAY

CONTAIN ADDITIONAL DATA.

Model GHI DNI Cloud cover

GFS, 0.5 deg. 3/6 hr mixed
interval average

None 3/6 hr mixed
interval average

NAM, 12 km 1 hr for 36 hrs
3 hr for 84 hrs

None 1 hr for 36 hrs
3 hr for 84 hrs

RAP, 13 km None None 1 hr instant

UA-WRF, 1.8 km 3 min instant 3 min instant None

resolutions for the NOAA GFS, NAM, and RAP models on
the NOMADS THREDDS service.

For the NOAA models studied in this paper, we use a model
proposed by Larson et. al. [4] to calculate GHI from cloud
cover forecasts:

GHI = (offset + (1− offset)(1− cloud cover))GHIclear (1)

where offset = 0.35, cloud cover is the total cloud cover, and
GHIclear is determined by PVLib’s clearsky.ineichen function
and PVLib’s climatological Linke turbidity table. The DISC
model is then used to calculate DNI and DHI. Here, we use
default values for all functions, however, forecasters may tune
the parameterizations to minimize forecast errors.

TABLE II
COMBINATIONS OF WEATHER MODEL AND IRRADIANCE PROCESSING

ALGORITHMS STUDIED.

Name GHI DNI

GFS-CC GFS Cloud cover + Larson GHI + DISC

UA-DISC WRF GHI + DISC

UA WRF + Aeronet WRF + Aeronet

NAM-CC NAM Cloud cover + Larson GHI + DISC

NAM-GHI NAM GHI GHI + DISC

RAP-CC RAP Cloud cover + Larson GHI + DISC

The University of Arizona Department of Hydrology and
Atmospheric Sciences runs a convective-permitting, 1.8 km



resolution configuration of the Weather Research and Fore-
casting (WRF) model [7] for operational forecasts of weather,
solar power, and wind power in Arizona and New Mexico [8].
As an example of the utility of PVLib-Python for creating
benchmark forecasts, we will compare PV forecasts derived
from the UA-WRF configuration to the PVLib-Python fore-
casts. WRF versions 3.7 and 3.8 were used for this study.
The model parameterization was adjusted throughout the year,
but includes SBU-YLIN and Morrison microphysics schemes,
and ACM2 and BouLac planetary boundary layer schemes [9].
UA-WRF namelists are available at [8]. Forecasts from the 0Z,
6Z, and 12Z GFS and NAM runs provide the initial and lateral
boundary conditions for a 5.4 km resolution outer domain,
which in turn provides initial and boundary conditions for the
1.8 km resolution domain. For this study, we analyzed WRF
models initialized with 6Z GFS data.

The UA-WRF model generates 3 minute resolution forecasts
of GHI, DNI, 2 m temperature, and 10 m wind speeds, among
other variables. This configuration of WRF does not account
for the impact of aerosols on irradiance, so we post-processed
the model’s irradiance forecasts using measurements of the
previous day’s average aerosol optical depth obtained from
the Aeronet site in Tucson, AZ [10]. We calculated daily
average broadband AOD, τbb, from AOD measured at 380
nm and 500 nm [11], and then computed modified DNI
and GHI as DNI = DNIwrf exp(−τbb/ cos θz) and GHI =
GHIwrf exp(−0.01/ cos0.4 θz), where θz is the solar zenith
angle. We also studied UA-WRF derived PV forecasts in
which DNI and DHI were inferred from the uncalibrated GHI
using the DISC model.

For all models, we linearly interpolate the model forecast
data from its native resolution, shown in Table I, to 5 minute
resolution. For the GFS, NAM, and RAP models we then
apply equation 1 and the DISC model, as discussed above,
to determine a forecast GHI, DNI, and DHI. For the NAM
model, we also create forecasts directly from its GHI forecasts.
Table II summarizes the combinations of weather model data
and processing algorithms studied in this paper. Figure 1(top)
shows the result of the 3 hourly cloud cover to 5 minute
irradiance conversion for the half-degree 2016-01-06-6Z GFS
forecast. Figure 1(bottom) shows the UA-WRF GHI forecast
and DISC-generated DNI and DHI forecasts. This UA-WRF
model was initialized using the same 2016-01-06-6Z GFS
forecast as shown in Figure 1(top).

III. FORECASTING PV POWER

We created forecasts for six PV systems in Arizona. The
systems included three single axis trackers, totaling 63 MW
AC, and three fixed tilt systems, totaling 14 MW AC. Five
of the six systems are located near Tucson, Arizona, and the
sixth system is located near Kingman, Arizona. Of the five
systems in Tucson, three are in the same forecast model grid
box. All of the studied PV systems are smaller than a forecast
model grid box.

We chose to use a simple PV model (NREL’s PVWatts
[12]) in which the only required parameters are DC name-
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Fig. 1. 3.5 days of GHI (blue), DNI (green), and DHI (red) forecasts derived
from a GFS forecast (top) and the UA-WRF initialized with the same GFS
forecast (bottom) for Tucson, Arizona. GFS model irradiance is derived using
equation 1 to determine GHI and the DISC model to determine its DNI and
DHI. The UA-WRF model directly forecasts GHI and, for this figure, the
DISC model was used to infer its DNI and DHI.

plate capacity and temperature coefficient. We imposed an
additional maximum AC capacity parameter to account for
inverter clipping. We determined system parameters by man-
ually optimizing forecast model performance for clear days.
This process was repeated for each forecast model to minimize
the impact of forecast model temperature and wind speed
biases. The optimum parameters did not vary by more than
10% from model to model. We resampled and processed
the weather forecast data to 5 minutes, applied the PVLib
PV modeling tools, and compared 1 hour average forecasts
and data. We used the Hay and Davies transposition model
[13], PVLib’s single axis tracker algorithm, a physical angle
of incidence modifier model [14], and the Sandia Array
Performance Model’s temperature model [15].

The code below demonstrates how the PV forecasts were
made using the high-level, object-oriented PVLib-Python
API. Readers may consult the PVLib-Python documentation
[16] and source code [17] for more information on the
function and method calls.

location = Location(
latitude=32.2, longitude=-110.9, altitude=700)

system = SingleAxisTracker(
module_parameters={

’pdc0’: 10, ’gamma_pdc’: -0.0035})
system.peak_ac_power = 9
mc = ModelChain(

system, location, orientation_strategy=None,
dc_model=’pvwatts’, ac_model=’pvwatts’,
aoi_model=’physical’, spectral_model=’no_loss’,
temp_model=’sapm’, losses_model=’no_loss’)

fx_model = GFS() # or NAM or RAP



for fx_file in nomads_files:
fx_data = pd.read_csv(fx_file)
fx_data = fx_data.resample(’5min’).interpolate()
fx_data = fx_model.process_data(fx_data)
mc.run_model(fx_data.index, weather=fx_data)
ac = mc.ac.clip_upper(system.peak_ac_power)
ac = ac.resample(’1h’, label=’right’).mean()

The GFS-CC, NAM-CC, and RAP-CC classes’ fx model
methods perform the following steps:

data[’temp_air’] = self.kelvin_to_celsius(
data[’temp_air’])

data[’wind_speed’] = self.uv_to_speed(data)
irrads = self.cloud_cover_to_irradiance(

data[cloud_cover], **kwargs)

The cloud cover to irradiance method was described above.
The NAM-GHI and UA-DISC processing algorithm is:

data[’temp_air’] = self.kelvin_to_celsius(
data[’temp_air’])

data[’wind_speed’] = self.uv_to_speed(data)
ghi = data[’ghi’]
solpos = self.location.get_solarposition(

ghi.index)
dni = disc(

ghi, solpos[’zenith’], ghi.index)[’dni’]
dhi = ghi - dni * np.cos(

np.radians(solpos[’zenith’]))

We used the dask.distributed framework to efficiently an-
alyze the data in parallel. Additional processing code is
available upon request.

IV. RESULTS

We studied forecast errors for all 2016 6Z GFS, 6Z NAM,
and 9Z RAP models that were available on the online NO-
MADS server. Half-degree GFS data was available for all of
2016, 12 km NAM data was available for August through
December 2016, and 13 km RAP data was available for June
through December 2016. We downloaded GFS data through
168 hours (out of a possible 384), NAM data through 72 hours
(out of a possible 84), and RAP data through 18 hours (out
of a possible 18 hours). These initialization times and time
ranges ensured that an integer number of local sunrise through
sunset periods was available for each model. The initialization
times also ensured that data from these models would have
been available by local sunrise of the first forecast day.
Metered 1 minute resolution PV data was manually filtered for
errors, and, where possible, scaled to correct for partial system
outages. We focus our analysis on the accuracy of the forecast
for all systems added together because this is often a more
relevant number for a utility company that manages generation
from a fleet of power plants. Hourly average forecasts derived
from each day’s weather models and the observed power are
shown for four days in Figure 2.

We calculated absolute and normalized mean bias error,
mean absolute error, and root mean squared error under many
conditions, only some of which can be shown here. Additional
information is available upon request. Errors were normalized
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Fig. 2. Four days of PV observed generation (black) and forecasts (colors)
derived from the GFS, NAM, RAP, and UA-WRF models using cloud cover
(CC) or irradiance forecasts. Generation and forecasts are summed from 6 PV
systems in Arizona.
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Fig. 3. NMAE forecast errors from the PVLib-Python processed GFS
forecasts for six PV systems (labeled A-F) as a function of forecast horizon.
The time range for this analysis is Jan. 2016–Dec. 2016.

by the maximum AC generation observed for each plant during
2016.

First, we examined GFS forecast errors as a function of
forecast day for each plant in the study period. Figure 3 shows
that forecast errors grow as a function of forecast horizon for
all systems. Other forecast models demonstrate similar trends
for all systems and these trends serve as a sanity check of
the algorithms. For different systems, NMAE for hours 0-
23 ranges from 8%-10%, while NMAE for hours 144-167
ranges from 9%-12%. The remainder of this paper analyzes
the aggregated generation and forecasts for all systems.

We compared the accuracy of all of the NOAA forecast
models as a function of the forecast horizon, shown in Figure
4. Times at which any forecast was missing were removed
from the comparative analyses. Therefore, the analysis of
the NOAA models comprises most dates in August through
December 2016. PV forecasts derived from NAM cloud cover
and GHI have the lowest errors for hours 0-23, while forecasts
derived from RAP cloud cover have the highest errors. The
GFS and the two NAM forecasts have similar errors in
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Fig. 4. NMAE forecast errors from the PVLib-Python processed forecasts
as a function of forecast horizon for the studied NOAA forecast models. The
GFS-CC (blue), NAM-CC (green), and RAP-CC (purple) PV forecasts were
derived from cloud cover forecasts, while the NAM-GHI (red) PV forecasts
were derived from the NAM’s GHI forecast and the DISC model. The time
range for this analysis is Aug. 2016–Dec. 2016. Times at which any forecast
was missing were removed from the analysis.

hours 24-47, while the GFS slightly outperforms both NAM
forecasts in hours 48-71. The cloud cover and GHI-based
NAM forecasts perform similarly until forecast hours 48-71,
at which the cloud cover based forecast is more accurate than
the GHI based forecast. This is likely due to the fact that the
NAM’s temporal resolution switches from hourly to 3-hourly
at 36 hours, and the interpolation of the 3-hourly GHI data
has significant errors.

Next, we use the GFS forecasts to benchmark the accuracy
of the UA-WRF model initialized on the GFS data. The
NMAE in Figure 5 shows that, for the systems studied
here, the UA-WRF model’s dynamic downscaling of the GFS
forecast yields a more accurate PV power forecast than the
GFS under most forecast horizons and data subsets. The
GFS forecast errors are similar for hours 0-23 and 24-47,
and steadily increase beyond that. In contrast, the UA-WRF
model’s hours 0-23 forecasts are more accurate than its hours
24-47 forecasts, but its hours 48-71 forecasts are no worse than
its hours 24-47 forecasts. There is little difference in accuracy
between the UA-WRF forecasts based on GHI and the DISC
model, and UA-WRF forecasts based on Aeronet-corrected
DNI and GHI.

Finally, we examined forecast accuracy as a function of
month of year. Figure 6 shows the accuracy of each method
for each month. The model errors exhibit similar trends, with
some outliers. For most models, forecast accuracy is worse
June through September, and best in May and November.
These results led us to examine the relationship between
forecast accuracy and clear sky condition. We downloaded
irradiance observations from the NREL OASIS station located
at the University of Arizona [18]. We used PVLib-Python’s
detect clear function to determine if a minute is clear or not,
summed the number of cloudy minutes in each month, and
normalized this by the number of minutes with GHI greater
than 1 W/m2. Figure 7 shows NMAE versus the percentage
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Fig. 5. NMAE forecast errors from the PVLib-Python processed forecasts
as a function of forecast horizon for the GFS with GHI derived from cloud
cover (blue), UA-WRF with DNI derived from DISC (green), and UA-WRF
with DNI post-processed with Aeronet data (red). The UA-WRF model was
initialized with the GFS forecasts. The time range for this analysis is Jan.
2016–Dec. 2016. Times at which any forecast was missing were removed
from the analysis.
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Fig. 6. NMAE intraday forecast errors from the PVLib-Python processed
intraday forecasts of each model over 2016.

of cloudy minutes per month. Relatively clear months, such
as February, May, October, and November 2016 have lower
errors, especially for the UA-WRF model.

V. FUTURE WORK

The emphasis of this work is to illustrate the use of PVLib-
Python to facilitate comparison and benchmarking of forecasts.
The benchmarks suffer due to the restricted data availability
of the NOMADS THREDDS service. NAM and RAP data
were only available for half of 2016. The RAP model’s GHI
variable was not available on the archive. Furthermore, the
High Resolution Rapid Refresh model was not available on
the NOMADS THREDDS service. A more comprehensive
forecast archive would enable more accurate comparisons of
forecast accuracy.

It is likely that the benchmark forecasts can be improved
with modest effort. The GFS data used here is from the
half-degree model. The newer quarter-degree GFS model may
yield more accurate predictions, particularly at longer forecast
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Fig. 7. Aggregate NMAE intraday forecast errors vs. percentage of cloudy
minutes per month in Tucson, AZ. Points are labeled by month of year.
Forecast errors are correlated with non-clear conditions.

horizons. A bias correction algorithm with a rolling training
period could reduce seasonal trends in forecast skill. Scaling
clear sky GHI by a different amount for low, mid, and high
level cloud cover, rather than one scaling factor for total
cloud cover, may yield significant improvements. Forecasts of
aerosol optical depth and precipitable water could be used in
the clear sky model for GHI.

VI. CONCLUSION

We used the PVLib-Python forecasting module to compare
the accuracy of solar power forecasts for a fleet of PV power
plants. The PVLib-Python library enables users to easily
access weather forecasts and process them into PV power
forecasts. The tool creates a standard set of data for PV
modeling from the mixed data types provided from weather
models. This work supports the standardization of PV power
forecast methods, simplification of the use of weather forecast
data for PV modeling, and fair and transparent PV power
forecast model performance evaluation. As an example, we
used PVLib-Python forecasts to benchmark the accuracy of
the UA-WRF model.

The PVLib-Python documentation [16] provides examples
for how to use the forecasting tool along with general PV
system modeling. Readers are encouraged to participate in the
PVLib-Python community via its GitHub page [17] and the
pvlib tag on stackoverflow.com.
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