
An Open Source Solar Power Forecasting Tool Using PVLIB-Python

William F. Holmgren∗, Derek G. Groenendyk†

∗Department of Atmospheric Sciences, University of Arizona, Tucson, AZ, 85721, United States
†Department of Hydrology, University of Arizona, Tucson, AZ, 85721, United States

Abstract—We describe an open-source PV power forecasting
tool based on the PVLIB-Python library. The tool allows users
to easily retrieve standardized weather forecast data relevant to
PV power modeling from NOAA/NCEP/NWS models including
the GFS, NAM, RAP, HRRR, and the NDFD. A PV power
forecast can then be obtained using the weather data as inputs
to the comprehensive modeling capabilities of PVLIB-Python.
Standardized, open source, reference implementations of forecast
methods using publicly available data may help advance the state-
of-the-art of solar power forecasting.

Index Terms—forecasting, performance modeling, PV model-
ing, software

I. INTRODUCTION

Solar power forecast methods continue to be developed
at a rapid pace, a necessary development for the integration
of substantial amounts of renewable energy in the electrical
grid [1]. A large number of solar forecasting algorithms have
been developed that make use of weather models developed
and operated by the national weather services or consortiums
of many countries. While these weather models have seen
significant improvements in accuracy over the last several
decades, solar power forecasting places new requirements on
these models and many models fail in some basic ways. For
example, many weather models do not use an accurate solar
position equation (the equation of time) and do not account for
aerosols in their radiative transfer algorithms [2]. Researchers
and forecast providers benchmark their new and possibly
proprietary weather models or machine learning algorithms on
these weather models. However, the calculation of PV output,
let alone irradiance, from weather models can be done in many
different ways. For example, should the model’s incoming
shortwave radiation (if available) or the model’s cloud fraction
be used? Or perhaps a blend of the two, potentially conditioned
on another model variable, could be used. Larson et. al.
recently evaluated the day-ahead accuracy of solar power
forecasts in the Southwestern United States and concluded that
researchers should shift their focus from irradiance to solar
power forecasts [3]. Even in our own experience in solar and
wind power forecasting at the University of Arizona [4], we
struggle to fairly, comprehensively, and transparently answer
the basic question of “How much better is your forecast?”.

We propose that both public and private solar power fore-
casters will benefit from standardized, open source, refer-
ence implementations of forecast methods that use publicly
available data. In this paper, we will demonstrate a tool for
the open source PVLIB-Python library that allows for simple
access to publicly available weather forecast data that is readily

converted into a PV power forecast. We will outline the basic
structure of the tool, describe some of the design challenges,
and finally walk through a simple example of how to use the
tool to create a solar power forecast. As of this writing, the
tool is available on the forecast branch of the PVLIB Python
git repository [5] with documentation on readthedocs.io [6].

PVLIB-Python is an BSD 3-clause open source library
for photovoltaic modeling and analysis for the Python pro-
gramming language [7], [8]. The library is based on the
PVLIB Matlab library originally developed at Sandia National
Laboratories [9]. PVLIB-Python is developed on GitHub and
uses modern development practices such as version control,
continuous integration testing, and automated documentation
builds [10]. The use of these tools in PVLIB-Python is
described in more detail in [8]. The Python language, along
with the open source Scientific Python (or PyData) stack of
libraries, provides a compelling platform for data collection,
analysis, network interfaces, web server integration, and much
more. Python has also been identified by Unidata, an essential
developer and maintainer of geosciences software, as a key
technology for geosciences [11]. Thus, PVLIB and Python
are natural choices for developing an open source tool that
combines weather forecasting and PV modeling.

II. FORECASTING WITH PVLIB-PYTHON

Creating a PV power forecast in PVLIB-Python can be
broken into two steps: accessing weather model data and
converting the weather model data into a power forecast.

A. Accessing Weather Model Data in PVLIB-Python with
Siphon

Unidata maintains and develops the Siphon library [12],
a tool to designed to make it easy to programmatically
access and download geosciences data in Python. The Siphon
library provides access to, among others, forecasts from
the Global Forecast System (GFS), North American Model
(NAM), High Resolution Rapid Refresh (HRRR), Rapid
Refresh (RAP), and National Digital Forecast Database
(NDFD) on a Unidata THREDDS server. Unfortunately,
many of these models use different names to describe
the same quantity (or a very similar one), and not all
variables are present in all models. For example, on
the THREDDS server, the GFS has a field named ‘To-
tal cloud cover entire atmosphere Mixed intervals Average’,
while the RAP has a field named ‘To-
tal cloud cover entire atmosphere single layer’,



and a similar field in the HRRR is named
‘Total cloud cover entire atmosphere’.

PVLIB-Python aims to simplify the access of the model
fields relevant for solar power forecasts. All models ac-
cessed via PVLIB-Python are returned with uniform field
names: temperature, wind speed, total clouds, low clouds,
mid clouds, high clouds, dni, dhi, ghi. To accomplish this, we
created an object-oriented framework in which each weather
model is represented by a class that inherits from a parent
ForecastModel class. The parent ForecastModel class
contains the common code for accessing and parsing the data
using Siphon, while the child model-specific classes (GFS,
HRRR), etc.) contain the code necessary to map and process
that specific model’s data to the standardized fields.

The code below demonstrates how to access and plot
forecast data using PVLIB-Python. This code accesses 7 days
of forecast data from the most recent GFS model and creates
the plot shown in Figure 1.

# import forecast models
from pvlib.forecast import GFS, NAM, NDFD, HRRR

# specify location
latitude = 32.2
longitude = -110.9
tz = ’US/Arizona’

# specify time range of start of today to 7 days
start = pd.Timestamp(datetime.date.today(), tz=tz)
end = start + timedelta(days=7)

# GFS model, defaults to 0.5 degree resolution
# 0.25 deg available
model = GFS()

# retrieve data. returns pandas.DataFrame object
data = model.get_processed_data(latitude, longitude,

start, end)

# plot cloud cover percentages
cloud_vars = [’total_clouds’, ’low_clouds’,

’mid_clouds’, ’high_clouds’]
data[cloud_vars].plot()
plt.ylabel(’Cloud cover %’)
plt.xlabel(’Forecast Time ({})’.format(tz))
plt.title(’GFS 0.5 deg forecast for lat={}, lon={}’

.format(latitude, longitude))
plt.legend()

The code works as follows. After the basic imports and
location specifications, we created an object, model, corre-
sponding to the GFS model, and then we called a method,
model.get_processed_data, to retrieve the data from
Unidata’s THREDDS server using the Siphon library and pro-
cess it into the relevant variables for PV power. This method
call returns a Pandas DataFrame, a convenient and powerful
data structure that is essentially a labeled two dimensional
array. Finally, we plotted a subset of the data, the cloud cover
forecasts.

The model.get_processed_data method is
a convenience method that combines two methods:
model.get_data and model.process_data. We
emphasize that the get_data and process_data methods
can be called independently of get_processed_data and

that this creates a powerful yet flexible framework in which to
experiment with new data retrieval and processing algorithms.
The parent ForecastModel implements the get_data
method and a basic process_data method. Each child
model implements its own process_data method that calls
the parent model’s process_data method and additional
methods to convert cloud cover to irradiance, normalize
surface winds, and convert temperatures, if necessary. For
example, the code below shows the abbreviated method
definitions for the GFS and NAM models that have slightly
different processing steps.
# in the GFS class
def process_data(

self, data, cloud_cover=’total_clouds’, **kwargs):
"""
Defines the steps needed to convert raw forecast
data into processed forecast data.

Parameters
----------
data: DataFrame

Raw forecast data
cloud_cover: str

The type of cloud cover used to infer
the irradiance.

Returns
-------
data: DataFrame

Processed forecast data.
"""
data = \

super(GFS, self).process_data(data, **kwargs)
data[’temperature’] = \

self.kelvin_to_celsius(data[’temperature’])
data[’wind_speed’] = self.uv_to_speed(data)
data = data.join(

self.cloud_cover_to_irradiance(
data[cloud_cover]),

how=’outer’)
return data.ix[:, self.output_variables]

# in the HRRR class
def process_data(

self, data, cloud_cover=’total_clouds’, **kwargs):

data = \
super(HRRR, self).process_data(data, **kwargs)

data[’temperature’] = \
self.isobaric_to_ambient_temperature(data)

data[’temperature’] = \
self.kelvin_to_celsius(data[’temperature’])

data[’wind_speed’] = self.gust_to_speed(data)
data = data.join(

self.cloud_cover_to_irradiance(
data[cloud_cover]),

how=’outer’)
return data.ix[:, self.output_variables]

PVLIB-Python currently uses the Liu-Jordan model [13]
to convert total cloud cover forecasts to irradiance forecasts,
though it is simple to implement new models and provide
additional options. Figure 2 shows the result of the cloud cover
to irradiance conversion. Note that the GFS data shown here
has a time resolution of 3-hours, thus the default irradiance
forecasts also have a 3 hour time resolution. However, it is
straightforward to interpolate the cloud cover forecasts onto
a higher resolution time domain, and then recalculate the



Fig. 1. Seven days of cloud cover forecasts from the GFS model for Tucson,
Arizona. The GFS model provides clouds total cloud cover (blue), low cloud
cover (green), mid cloud cover (red), and high cloud cover (purple). Multiple
cloud levels can be used to create a more accurate irradiance forecast. The
figure is generated using only the code shown in the text.

Fig. 2. Seven days of GHI (blue), DNI (green), and DHI (red) forecasts
derived from the GFS model for Tucson, Arizona. PVLIB-Python currently
uses the Liu-Jordan model to convert cloud cover to irradiance.

irradiance. An example of this procedure is shown in the
online documentation [6]. We encourage users to become
familiar with the source code so that they may understand
what, exactly, the algorithms do and we reiterate that the open
source, permissively licensed, and accessible code enables
users to customize the model processing to their liking.

B. PV Power Forecasting

The standardized weather model data can now be easily
integrated with PVLIB-Python’s power modeling tools. For a
detailed explanation of the power modeling steps and exam-
ples, we refer to reader to PVLIB-Python’s online documenta-
tion and IPython Notebook tutorials [6]. In brief, the plane of
array irradiance (POA) is calculated from the GHI, DNI, and
DHI using a built-in solar position calculator and transposition
model. Then, a module and inverter are specified by name from

Fig. 3. Seven days of DC (blue) and AC (green) power forecasts derived
from the GFS model for Tucson, Arizona.

an online database. The forecasts of ambient temperature and
wind speed, plus the module parameters, are used to calculate
PV cell and module temperatures. DC power is calculated
using the Sandia Array Performance Model or the single diode
model, using the forecast POA irradiance, forecast module
temperature, and reference module specifications. Finally, the
Sandia Inverter Model is applied to calculate the AC power
forecast. The online documentation demonstrates that many of
these steps can be automated via a ModelChain object [6].
Figure 3 shows an example of the DC and AC power forecast
for a single module and a small inverter using the same set of
GFS forecast data shown above.

III. CONCLUSION

We described a new module for the PVLIB-Python library
that enables users to easily access weather forecasts and
process them into PV power forecasts. The tool creates a
standard set of data for PV modeling from the sparse and
mixed types of data provided from weather models. The code
is open source, written in an accessible language, and uses
online version control, automated testing, and documentation
services. We believe that it is an important step towards the
standardization of PV power forecast methods, simplification
of the use of weather forecast data, and fair and transparent
PV power forecast model performance evaluation.

Finally, we encourage readers to download the project, use
the code, and propose improvements and new directions using
our GitHub page [10].

ACKNOWLEDGMENTS

The authors gratefully acknowledge Sandia National Labo-
ratories for the initial development of PVLIB-MATLAB and
PVLIB-Python and the ongoing contributions of many others
to the project. A list of PVLIB-Python contributors may
be found on the GitHub repository [10] and in the online
documentation [14]. The authors also gratefully acknowledge
Unidata, the Siphon developers, and the NCEP, NWS, and



other NOAA personnel that create, develop, and provide access
to the weather models discussed above. WFH thanks the
Department of Energy (DOE) Office of Energy Efficiency and
Renewable Energy (EERE) Postdoctoral Research Award for
support.

REFERENCES

[1] J. Kleissl, Solar Energy Forecasting and Resource Assessment. Oxford,
UK: Elsevier, 2013.

[2] P. A. Jimenez, J. P. Hacker, J. Dudhia, S. Ellen Haupt, J. A.
Ruiz-Arias, C. A. Gueymard, G. Thompson, T. Eidhammer, and
A. Deng, “Wrf-solar: An augmented nwp model for solar power
prediction. model description and clear sky assessment,” Bulletin
of the American Meteorological Society, 2015/12/14 2015. [Online].
Available: http://dx.doi.org/10.1175/BAMS-D-14-00279.1

[3] D. P. Larson, L. Nonnenmacher, and C. F. M. Coimbra, “Day-ahead
forecasting of solar power output from photovoltaic plants in the
american southwest,” Renewable Energy, vol. 91, pp. 11–20, 6
2016. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0960148116300398

[4] W. F. Holmgren, A. T. Lorenzo, M. Leuthold, C. K. Kim, A. D. Cronin,
and E. A. Betterton, “An operational, real-time forecasting system for
250 mw of pv power using nwp, satellite, and dg production data,” PVSC
Proceedings, 2014.

[5] PVLIB Python contributors. pvlib/pvlib-python. [Online]. Available:
http://pvlib-python.readthedocs.io/en/forecast/forecasts.html

[6] W. F. Holmgren and D. G. Groenendyk. pvlib-python forecast branch
documentation. [Online]. Available: http://pvlib-python.readthedocs.io/
en/forecast/forecasts.html

[7] R. W. Andrews, J. S. Stein, C. Hansen, and D. Riley, “Introduction
to the open source PV LIB for Python Photovoltaic system modelling
package,” in 40th IEEE Photovoltaic Specialist Conference, 2014.

[8] W. F. Holmgren, R. W. Andrews, A. T. Lorenzo, and J. S. Stein, “Pvlib
python 2015,” in 42th IEEE Photovoltaic Specialist Conference, 2015.

[9] J. S. Stein, “The photovoltaic performance modeling collaborative
(PVPMC),” in Photovoltaic Specialists Conference, 2012.

[10] PVLIB Python contributors. pvlib/pvlib-python. [Online]. Available:
https://github.com/pvlib/pvlib-python

[11] Unidata. Unidata projects: Python. [Online]. Available: http://www.
unidata.ucar.edu/projects/index.html#python

[12] ——. Siphon. [Online]. Available: https://github.com/Unidata/siphon
[13] B. Y. H. Liu and R. C. Jordan, “The interrelationship and

characteristic distribution of direct, diffuse and total solar radiation,”
Solar Energy, vol. 4, no. 3, pp. 1–19, 7 1960. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0038092X60900621

[14] PVLIB Python contributors. pvlib-python documentation. [Online].
Available: https://pvlib-python.readthedocs.io

http://dx.doi.org/10.1175/BAMS-D-14-00279.1
http://www.sciencedirect.com/science/article/pii/S0960148116300398
http://www.sciencedirect.com/science/article/pii/S0960148116300398
http://pvlib-python.readthedocs.io/en/forecast/forecasts.html
http://pvlib-python.readthedocs.io/en/forecast/forecasts.html
http://pvlib-python.readthedocs.io/en/forecast/forecasts.html
https://github.com/pvlib/pvlib-python
http://www.unidata.ucar.edu/projects/index.html#python
http://www.unidata.ucar.edu/projects/index.html#python
https://github.com/Unidata/siphon
http://www.sciencedirect.com/science/article/pii/0038092X60900621
https://pvlib-python.readthedocs.io

	Introduction
	Forecasting with PVLIB-Python
	Accessing Weather Model Data in PVLIB-Python with Siphon
	PV Power Forecasting

	Conclusion
	References

