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Abstract—We built an irradiance sensor network that we are
now using to make operational, real-time, intra-hour forecasts of
solar power at key locations. We developed reliable irradiance
sensor hardware platforms to enable these sensor network fore-
casts. Using 19 of the 55 irradiance sensors we have throughout
Tucson, we make retrospective forecasts of 26 days in April
and evaluate their performance. We find that that our network
forecasts outperform a persistence model for 1 to 28 minute time
horizons as measured by the root mean squared error. The sensor
hardware, our network forecasting method, error statistics, and
future improvements to our forecasts are discussed.

Index Terms—data analysis, forecasting, real-time systems,
sensors, solar energy.

I. INTRODUCTION

The demand for high accuracy solar power forecasting ser-
vices is increasing as electric utilities and independent service
operators add more variable and potentially destabilizing solar
power generation. Numerous forecasting methods are being
actively developed including those based on artificial neural
networks [1], total sky imagers [2]–[5], irradiance sensor
networks [6], [7], satellite derived irradiance [8], numerical
weather models [9], and hybrid methods [10]. Each method
has an optimal forecasting horizon; often, total sky imagers
and irradiance sensor network forecasts perform best for very
short (5-30 minutes) time horizons, satellite forecasts perform
best for short- to mid-term horizons (1-4 hours), and numerical
weather models perform best for longer horizons (>4 hours).
The optimal horizon for neural networks and hybrid methods
varies.

In our preliminary study [6], we made retrospective fore-
casts using 15 minute data from rooftop PV systems that
performed optimally for 45 minute time horizons. In this paper,
we describe our operational forecasts that are made using an
improved sensor network that reports in real-time. We evaluate
forecasts from 26 days in April that were made retrospectively.
Preliminary evaluation presented here shows that our network
forecasts outperform a persistence forecast for 1 to 28 minute
time horizons. We attribute this difference in performance
compared to our earlier study to the smaller network used in
the study. Our previous study was also restricted to 15 minute
averaged data that hides some solar variability.

In Section II, we describe our irradiance monitoring network
and the sensors we developed. Then, we explain our method
to generate irradiance network forecasts in Section III. Error

statistics are presented in Section IV, and conclusions and
future work are discussed in Section V.

II. IRRADIANCE MONITORING NETWORK

A major barrier to making irradiance network based PV
power forecasts is obtaining irradiance data in near real-
time with high spatial and temporal resolution. We currently
have a network of 55 sensors throughout the Tucson region
that we use to make operational network forecasts. In this
concentrated study, we use a subset of 19 sensors near the
University of Arizona Science and Technology Park (UASTP).
Our sensors are made up of irradiance network nodes (INNs)
that we developed, rooftop PV system power data direct
from monitoring equipment, and utility-scale PV power data.
We now describe the INN hardware we developed to make
network forecasts, the central database where all irradiance
data is stored, and the network used in this study.

A. Sensor Hardware

To make high-quality network forecasts, we need reliable
sensor hardware that reports in nearly real-time. We chose to
design our own hardware after researching existing solutions
in the market and finding them unsuitable or too expensive.
Our sensor hardware is relatively cheap, uses reliable Linux
microcomputers, and requires minimal maintenance. It is also
worth noting that our current sensors are not meant to be accu-
rate global irradiance sensors, although with careful mounting
and a suitable pyranometer, they can be. A summary of the
sensor hardware is presented in Table I.

TABLE I
SUMMARY OF IRRADIANCE NETWORK NODES

Model Comms.
Backend

Sensor
Type

Processing
Unit

Collection
Period

Saguaro Cellular data
network

Pyranometer
or
photodiode

iMX233-
OLinuXino-
MICRO

1 second

Prickly Pear Ethernet
internet
connection

Rooftop PV
power mea-
surement

Raspberry
Pi

10 seconds

Yucca Ethernet
internet
connection

Pyranometer
or
photodiode

Raspberry
Pi

1 second



The Saguaro INN is designed to be placed in remote
locations and communicate via cellular data networks. We
use either a calibrated pyranometer (Apogee SP-212) or a
cheap silicon photodiode (Osram BPW34) to monitor the
irradiance at the location of the sensor. We use an appropriate
trans-impedance amplifier to convert the current from the
photodiode to a measurable voltage. Voltage data from the
sensor is read every second from a program running on an
Olimex iMX233-OLinuXino-MICRO via an analog to digital
converter. This data is sent every minute via a cellular mo-
dem (Multi-Tech MTSMC-H5) to our central database. This
hardware is co-located on a custom PCB along with a DC-DC
switching power supply, a board temperature monitor, and a
battery voltage monitor. A 10W solar panel, 6Ah, 12V lead
acid battery, and solar charge controller provide power to the
hardware that consumes less than 1W of power on average. A
picture of the Saguaro INN is shown in Fig. 1.

Fig. 1. Picture of the Saguaro INN. The solar panel that provides power to
the unit and the sensor attached to the stalk are visible.

The Prickly Pear and Yucca INNs both send data over the
internet using a Raspberry Pi, but use different sensors. The
Prickly Pear INN communicates over Ethernet to a rooftop PV
system’s monitoring hardware (e.g. SMA Sunny WebBox) to
use PV power as a proxy for irradiance. The Yucca INN uses a
pyranometer or photodiode, like the Saguaro INN, that is read
via an Arduino FIO placed in the sun and transfered via XBee
to the central unit. The Prickly Pear and Yucca both use a
cheap Linux computer (Raspberry Pi) as the central collection
point.

All three INNs use the Arch Linux operating system with

custom kernels. Most programs are written in Python. We
currently use SFTP to transfer the data from the sensor to
our central database every minute. In the future we will use
the messaging service ZeroMQ to transfer data with lower
latency. We can update the software remotely using Fabric,
and we use SSH to remotely log-in to a sensor if needed.
We also have scripts on the Saguaro INN that monitor the
cellular data connection, the board temperature, and the battery
voltage. The INNs only send data during the day (as calculated
by ephemeris code for each day) to save power and network
bandwidth.

B. Central Database

As soon as data is sent to our central server via SFTP or
ZeroMQ, a script loads the one-second data into a MySQL
database. The data is identified by a sensor ID number, epoch
time stamp, and measurement. We also keep a MySQL table to
store metadata for each sensor including location, sensor type,
etc., and a table to store battery charge levels and temperatures
for Saguaro INNs.

C. Network Used in this Study

A map of the 19 sensors used in this focused study is shown
in Fig. 2. Most of the sensors are Saguaro INNs, although
some are 5-minute data from rooftop PV systems, and 2-
second power data from utility-scale installations. Forecasts
were analyzed for locations at the UASTP, shown in Fig.
2b. We use a higher density of sensors to the southwest of
the UASTP because the primary wind direction is from the
southwest.

III. SENSOR NETWORK FORECASTS

Here we describe how we generate our network forecasts,
which is similar to our previous method described in [6]. First,
we generate clear-sky expectations for each sensor using data
from clear days. Operationally, these are generated roughly
weekly and checked visually. This data driven approach cap-
tures shading due to obstacles, orientation, and other system
specific parameters. At each specified time step t (every 1
minute in this study), we calculate the clearness index for
each sensor n as

Kn(t) =
gn(t)

gn,clear(t)
(1)

where gn(t) is the measured data at time t and gn,clear(t) is
the clear-sky expectation at time t. In this study, the measured
data is the average of the data collected over the previous one
minute. Once the clearness is calculated for each sensor, we
use bivariate interpolation to make an interpolated clearness
map similar to Fig. 3. We set the boundary of this map using
the average clearness of all sensors for the previous minute.
We can also use satellite images or numerical weather models
to set this boundary. Then, we forecast the clearness for a
sensor or arbitrary location by propagating this clearness map
using an assumed cloud motion vector. There are a number
of ways we could calculate this cloud motion vector, and
we describe some methods we will explore in future work in



(a) Full Sensor Map

(b) Detailed UASTP Map

Fig. 2. Map of sensors used in this study throughout the Tucson area. A more
detailed map of the UA Science and Technology Park (UASTP) highlighted
in (a) is shown in (b).

Section V. Here, we use the hourly output of a custom, high-
resolution Weather Research and Forecasting (WRF) model
that are produced earlier in the day to determine this cloud
motion vector. To make this determination, we find the most
likely cloud base height and then use the wind speed and
direction at this height as the cloud motion vector. Finally, we
calculate the quantity of interest (power or irradiance) with this
forecasted clearness and the clear-sky expectation. We repeat
this procedure for each forecast horizon. For this study, this
means that we calculate the a new forecast every minute during
the day for each of the next thirty minutes. A single example
forecast for a Saguaro INN for a cloudy day in April is plotted
in Fig. 4. A full day of 10-minute ahead forecasts is shown in
Fig. 5.

Fig. 3. Example interpolated clearness map.

Fig. 4. Example forecasts made for a 30 minute period on 4/22/2014. The
network forecast, clearness persistence forecast, clear-sky expectation, and
measured data are shown. Forecasts shown are made at 15:29.

IV. ERROR STATISTICS

We now present error statistics for GHI forecasts made for
26 days in April. Of these days, 10 days had completely
clear skies, 8 days were variable due to high, thin cirrus
clouds, 2 days were overcast, and the remaining 6 days
were highly variable. Data used to calculate and evaluate the
forecasts were binned into 1 minute averages. Forecasts were
calculated and evaluated for each minute of the day for forecast
horizons from 0 to 30 minutes. Forecast error metrics were
calculated for each day and then averaged for the month. Only
daylight hours were considered. In addition to evaluating our
network forecasts, we also evaluate a clear-sky model and two
persistences models: a clearness based model that assumes
the clearness is constant and a measurement based model that



Fig. 5. Example 10 minute ahead forecasts made on 4/18/2014. The network
forecast, clearness persistence forecast, clear-sky expectation, and measured
data are shown. The forecasts for 10 minutes in the future are made every
minute.

assumes the measured irradiance is constant. Obviously, the
measurement persistence model will have larger errors and less
skill than a clearness persistence model as forecast horizon
increases because it does not account for the diurnal cycle.
For comparison, the clear-sky forecast model simply assumes
that any future irradiance will be the same as the clear-sky
expectation. We also compared our network forecasts to the
first day of 3 minute irradiance forecast produce by our WRF
model.

The mean absolute error (MAE) and root mean squared
error (RMSE) (using the standard definitions as found in [11])
for forecast horizons that are multiples of 5 are shown in Table
II for a single sensor. A plot of MAE vs forecast time horizon
is shown in Fig. 6 and a plot of RMSE vs forecast time horizon
is shown in Fig. 7. The clearness persistence MAE and RMSE
at the 0 minute forecast horizon is not identically zero because
we limit the clearness to a maximum of 1.1 and errors in the
clear-sky expectation in the early morning and late evening
often result in a calculated clearness in excess of this 1.1 limit.
Since we then use this 1.1 clearness to calculate the expected
irradiance, our expectation and the actual measurement do
not match leading to small errors. The network forecast is
similarly affected by this clipping, but the larger error at the
0 minute horizon is due to the interpolation we use to make
clearness maps. Since this interpolation is smoothed to best
fit all sensors, the calculated clearness does not always match
the measured clearness. Despite these errors, it is encouraging
that our irradiance network based forecasts outperform the
persistence model for the days studied for 1 to 28 minutes
as measured by RMSE and 2 to 17 minutes as measured by
MAE.

TABLE II
ERROR STATISTICS FOR 26 DAYS IN APRIL FOR PERSISTENCE AND

NETWORK FORECASTS.

Clearness Persistence Network Forecast
Forecast
Horizon

MAE
(W/m2)

RMSE
(W/m2)

MAE
(W/m2)

RMSE
(W/m2)

0 min 0.166 1.23 3.26 11.3
5 min 30.4 58.6 27.6 48.1
10 min 38.7 69.1 36.6 60.0
15 min 43.6 74.8 43.0 67.9
20 min 47.7 79.0 50.0 74.7
25 min 50.6 81.3 54.1 78.6
30 min 52.9 83.2 60.1 85.4

Fig. 6. Mean absolute error as a function of forecast horizon for a single
sensor calculated each day and averaged over 26 days in April.

Fig. 7. Root mean squared error as a function of forecast horizon for a single
sensor calculated each day and averaged over 26 days in April.



V. CONCLUSIONS

We designed and built low-cost irradiance sensors in order
to make irradiance network forecasts. Using this network, we
have been making operational forecasts since the beginning of
2014. A retrospective analysis for 26 days in April shows that
our forecasts often perform better than a persistence model.
This work seems to show that our method is better than using
a cloud camera as in [4], but one must remember that our
error statistics were calculated for irradiance and not clearness.
This essentially weights our MAE and RMSE by the time of
day. In the near future, we will re-evaluate our forecasts to
make a more direct comparision with other work. We will
also calculate numerous metrics that are described in [11] and
[12] for further comparison with other techniques.

While our results of intra-hour forecasts with a network
of irradiance sensors are encouraging, there are still many
improvements to be made. We are satisfied with the operation
of our custom INNs, but we need to deploy more throughout
the Tucson region for higher quality forecasts that perform
better at forecast horizons approaching one hour. There are
also numerous improvements that we can explore for our
forecasting algorithm including:

1) More accurate cloud motion vectors from ground sensor
correlations, upper-air soundings, WRF forecasts, artifi-
cial neural networks, or some combination

2) Improved clearness map boundaries that incorporate
satellite derived irradiance

3) Clearness map interpolation techniques that use previous
measurements more wisely to fill in gaps.

These improved operational forecasts will provide a bench-
mark for network based models.
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