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Abstract—We describe how Bayesian data assimilation can be
used to improve nowcasts of irradiance over small, city-scale,
spatial areas. Specifically, we use optimal interpolation (OI) to
improve satellite derived estimates of global horizontal irradiance
(GHI) using ground truth data that was collected sparsely over
Tucson, AZ. Our results show that the local data indeed improves
the satellite derived estimates of GHI. A key to success with OI
in this context is to prescribe correlations based on cloudiness,
rather than spatially. OI can be used with a variety of data, e.g.,
rooftop photovoltaic production data or irradiance data, as well
as with several different satellite derived irradiance models.

Index Terms—data assimilation, optimal interpolation, remote
sensing, solar irradiance

I. INTRODUCTION

Accurate estimates of the global horizontal irradiance (GHI)
are crucial to the deployment and grid integration of photo-
voltaic (PV) systems. Satellite derived GHI estimates are used
to design and site PV power plants, to forecast the power
output of a fleet of PV generators, and to provide electric
utilities real-time estimates of the distributed generation (DG)
or “behind the meter” generation of rooftop PV systems. Data
assimilation provides a framework to combine the large area
coverage of GHI estimates derived from satellite imagery with
the more accurate data of ground sensors.

Previous work has also explored using data assimilation
techniques to improve solar radiation estimates [1], [2]. We
use optimal interpolation (OI), which can be thought of as
a generalized least squares approach [3]. OI is a statistical
method to combine prior information about some parameter
(the background) with observations based on the errors and
correlations in the background and observations. The back-
ground is computed from satellite estimates, the observations
come from a mix of GHI sensors and rooftop PV systems. OI
is also used by [2], where numerical weather prediction (NWP)
solar radiation data are combined with ground sensors. A key
difference and innovation in our paper is that correlations
used for OI are prescribed based on differences in cloudiness
between locations, rather than spatial distance.

Our paper is organized as follows. We describe OI in Sec. II
and apply it to satellite GHI estimates in Sec. III. We discuss
the results in Sec. IV and future work in Sec. V. Finally, a
summary is provided in Sec. VI.

II. OPTIMAL INTERPOLATION PROCEDURE

A. Method

We briefly describe the OI method; the derivation can be
found in many data assimilation textbooks, e.g. [3]. The output
of an OI routine (known as the analysis), x̂, is a vector of
length N and is a weighted sum of the background (the
prior information represented as an N vector), xb, and the
measurements, y (M vector):

x̂ = xb +W(y −Hxb). (1)

In this study, xb is composed of satellite derived clear-sky
indices and y is composed of clear-sky indices from a number
of ground irradiance sensors. The observation matrix, H (M×
N matrix), maps points in the background space to points in
observation space. We construct H using the nearest neighbor
approach of selecting the background points that are closest
to the observation locations. The weight matrix, W (N ×M
matrix), is constructed from the error covariance matrix of the
background, P (N × N matrix), and the error covariance of
the observations, R (M ×M matrix) as

W = PHT (R+HPHT )−1. (2)

We also compute the error covariance matrix of the analysis,
P̂ (N ×N matrix), as

P̂ = (I−WH)P, (3)

where I is the N ×N identity matrix.
An essential part of the OI routine is choosing appropriate

error covariance matrices, R and P. The standard method, that
we also follow is to assume that the errors between sensors
are uncorrelated so that R is a diagonal matrix. Each diagonal
element of R is the variance of the observations at each
location over a given period (in the results that follow we
used the entire study period).

The method we use to obtain P is novel, in fact it is
the primary difference between our work and [2]. First, we
separate P into a correlation matrix C and diagonal variance
matrix D:

P = D1/2CD1/2. (4)

We obtain D in a similar manner as R: we take the variance
of each pixel in the satellite image over some period of time.

Care must be taken when estimating the background correla-
tion matrix C. A standard method is to assume the correlation



decays exponentially with distance between points and this
approach is taken in [2]. This method works well for resource
assessment with daily or longer integration times and for
nowcasts at locations with sensors nearby. The method we
use depends on the actual distributions of clouds as seen by
the satellite. The idea is that pixels in the background that
have similar cloudiness have high correlation and those with
very different cloudiness have low correlation. In the final
analysis, this translates to only adjusting the cloudy areas with
observations that are also cloudy and leaving the clear areas
to be adjusted by observations of the clear sky.

To construct the correlation matrix C (N × N ), we first
define the distance, dij , as the difference between pixel i and
pixel j of an image v (N vector) that defines the cloudiness,

dij = |vi − vj |. (5)

To obtain the elements of C, cij , we apply a known correlation
function, k, to each distance so that

cij = k(dij). (6)

Any one of a number of covariance functions could be chosen
for k; see [4] for a partial list. In this work, we studied piece-
wise linear correlation functions,

k(r) =

{
1− r

l r < l
0 r ≥ l , (7)

where l is a characteristic length that must be specified. The
choices of k and l need to be tuned to the area that the
algorithm is applied to. Once the error covariance matrices
are defined, one can compute an analysis estimate using the
above equations.

B. Data used for optimal interpolation

This study applies OI to observations and geostationary
satellite data from April, May, and June 2014 in Tucson,
AZ. The observation data were collected from 22 diverse
sensors including a calibrated NREL MIDC sensor [5], custom
irradiance sensors [6], and data from rooftop PV systems.
Irradiance observations were averaged to 1 minute and PV
data are reported as 5 minute averages. We note that all data
sources (observations and satellite images) are available in
near real-time so that the OI corrected GHI images can be
used as a basis for forecasts. To simplify the computation,
all data were converted to clear-sky index data using clear-
sky expectations for each sensor. Five sensors, including the
calibrated NREL MIDC GHI sensor, were not used in the OI
process for validation and error statistics are only presented
for these withheld sensors. The remaining 17 sensors are used
as the observations, y, in the OI routine.

The satellite data were obtained from the GOES-W geosta-
tionary satellite, which was GOES-15 for the period of interest.
To obtain the background error correlation, we estimate the
cloudiness image, v, from the 1 km resolution, visible band of
the satellite as follows. We convert the raw visible brightness
counts, bi, to visible albedo, divide by the cosine of the solar
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Fig. 1. Adjusted visible albedo image derived from the GOES-W visible
reflectance image on 2014-04-18 18:30Z over Tucson, AZ. The lighter/high
albedo areas indicate cloudy areas. The green circles are the sensors used for
OI, the blue squares are the sensors used for error analysis, and the black
circle in the center is the calibrated NREL MIDC sensor.

zenith angle, φ, to correct for the time of day, and arrive at
an adjusted visible albedo,

vi =

(
bi
255

)2

/ cos(φi). (8)

We plot the adjusted visible albedo as a map over Tucson,
AZ, in Fig. 1. The lighter areas in Fig. 1 correspond to areas
of high albedo which indicates that the area is cloudy. This
adjusted visible albedo is used to obtain the background error
correlation matrix via eqs. (5)–(7) with a correlation length
of l = 0.2. However, other quantities, such as cloud fraction,
could also be used to estimate the cloudiness at each satellite
pixel.

C. Satellite derived irradiance models

We studied two satellite image to GHI models to generate
the background image, xb, which was also converted to clear-
sky index before applying OI.

One satellite to GHI model to generate xb is a physically
based model called the University of Arizona Solar Irradiance
Based on Satellite (UASIBS) model [7]. UASIBS uses the
visible and infrared images from the GOES-W satellite to
generate a cloud mask. Then, parameterized cloud properties
determined from the infrared images are used in a radiative
transfer model to determine the surface GHI. This GHI es-
timate has the same resolution as the visible channel of the
GOES-W satellite (approximately 1km).

The second model to generate xb is a semi-empirical model,
which we refer to as the EM model. This model is based on the
SUNY model which applies a regression to the visible channel
of the GOES-W satellite [8]. The only differences between the
EM model and the SUNY model are that the dynamic range
is set only with the 3 months of data used in this study instead
of the recommended 60 day window with seasonal correction
and that the specular correction factor was neglected.
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Fig. 2. Example OI results for one image/data taken on 2014-04-19 18:30Z (11:30 AM local time). The top row are the background satellite derived clear-sky
index estimates before OI. The lower row are the clear-sky index analysis after performing OI. Satellite derived estimates using the UASIBS model are on
the left and those using the EM model are on the right. Lighter shades indicate thicker clouds. The green circles are the sensors used for OI, the blue squares
are the sensors used for error analysis, and the black circle in the center is the calibrated NREL MIDC sensor. Comparing the background and analysis, one
can see that the thin cloud near the center of the image is made slightly thicker in the analysis.

III. RESULTS

In this section, we present the results of the analysis of
roughly 1200 satellite images taken over Tucson, AZ. Both the
UASIBS and EM models described above were used to convert
the raw satellite images to estimates of GHI at the surface and
then used as the background field for the OI algorithm.

Figure 2 shows uncorrected background maps of clear-sky
index derived from the UASIBS and EM models and the OI
corrected analysis. Notice that in the UASIBS analysis image,
the thin clouds in the center of the image are thicker than in
the background based on the information of the sensors near
the top of the image that measure other parts of the cloud.
For the EM model, OI adjusts the cloudy areas to be more
cloudy and the clear areas to be more clear. We also see that
the analysis images in Fig. 2 are similar suggesting that OI
works robustly with different satellite image to GHI models
that define the background.

Figure 3 shows an example of the errors of the background
and analysis images as compared to sensor observations for a
single satellite image/time processed with the UASIBS model.
The errors shown are computed from sensors that are not used
during OI. We see that the absolute error was reduced for

all sensors, including the calibrated MIDC sensor and rooftop
PV systems. This suggests that the OI correctly propagates
information from data to unobserved locations.

We calculated empirical cumulative distribution functions
(CDF) for the observations, background, and analysis. Figure
4 shows these CDFs for the UASIBS model. The slope of
zero around 0.8 in the CDF of the UASIBS background (red
dashed-dotted line) indicates that the UASIBS model does not
predict clear-sky indices of 0.8. The analysis (blue dashed line)
does predict clear-sky indices in that range and even extends
the range over 1.0 to more closely match the observations.

The empirical CDF for the EM model is shown in Fig. 5. We
see that the EM model tends to over-predict clouds, but that
the OI then removes much of this bias. On the other hand, the
figure suggests that the analysis could be improved at smaller
clear-sky indices to better match the observations.

For the 1200 images analyzed, root-mean squared errors
(RMSE), mean absolute errors (MAE), and mean bias errors
(MBE) decreased on average. Error statistics for the EM and
UASIBS models in terms of the clear-sky index calculated over
all the withheld sensors and for clear, cloudy, and all days are
presented in Table I. Error statistics in units of GHI for the
calibrated MIDC irradiance sensor are presented in Table II.



TABLE I
ERROR STATISTICS CALCULATED OVER 1200 SATELLITE CLEAR-SKY INDEX ESTIMATES AND OI CORRECTED ANALYSIS. BOTH THE EMPIRICAL (EM)
MODEL AND UASIBS MODEL DESCRIBED IN SEC. II-C ARE SHOWN. THE MEAN ABSOLUTE ERROR (MAE), ROOT MEAN SQUARED ERROR (RMSE),

AND MEAN BIAS ERROR (MBE) ARE CALCULATED OVER ALL THE WITHHELD SENSORS AND ALL IMAGE TIMES AS A SINGLE TIME-SERIES. STATISTICS
WERE CALCULATED FOR ALL DAYS, ONLY CLEAR DAYS (ROUGHLY 700 DAYS), AND CLOUDY DAYS (500 DAYS). ALL NUMBERS ARE IN UNITS OF

CLEAR-SKY INDEX WHICH HAS A TYPICAL RANGE OF 0 TO 1.3.

MAE RMSE MBE
All Clear Cloudy All Clear Cloudy All Clear Cloudy

EM analysis 0.088 0.048 0.149 0.172 0.095 0.245 0.026 0.021 0.033
EM background 0.184 0.152 0.231 0.268 0.213 0.333 0.138 0.140 0.136

UASIBS analysis 0.080 0.039 0.141 0.164 0.088 0.235 -0.005 -0.004 -0.006
UASIBS background 0.094 0.047 0.164 0.190 0.099 0.275 -0.015 -0.003 -0.034

TABLE II
ERROR STATISTICS CALCULATED OVER 1200 SATELLITE GHI ESTIMATES AND OI CORRECTED ANALYSIS FOR THE CALIBRATED NREL MIDC SENSOR.
BOTH THE EMPIRICAL (EM) MODEL AND UASIBS MODEL DESCRIBED IN SEC. II-C ARE SHOWN. THE MEAN ABSOLUTE ERROR (MAE), ROOT MEAN
SQUARED ERROR (RMSE), AND MEAN BIAS ERROR (MBE) ARE CALCULATED OVER ALL IMAGE TIMES AS A SINGLE TIME-SERIES. STATISTICS WERE

CALCULATED FOR ALL DAYS, ONLY CLEAR DAYS (ROUGHLY 700 DAYS), AND CLOUDY DAYS (500 DAYS). UNITS ARE W/M2 .

MAE RMSE MBE
All Clear Cloudy All Clear Cloudy All Clear Cloudy

EM analysis 56.0 23.4 104. 113. 32.3 174. 16.1 17.3 14.3
EM background 110. 85.7 145. 144. 97.0 194. 75.0 83.8 61.9

UASIBS analysis 50.9 17.5 101. 110. 26.4 171. 2.94 6.96 -3.03
UASIBS background 53.1 16.4 108. 120. 27.9 186. -12.4 3.02 -35.2
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Fig. 3. A plot of the absolute error in the analysis and background
images (generated with UASIBS) as compared to observations at some sensor
locations showing reduced errors for a single satellite image. The sensors
shown were not included in the OI correction routine. Note that sensor 11184
is the MIDC calibrated irradiance sensor and sensors 437, 435, and 407
are rooftop PV systems. The red squares indicate the absolute error in the
background image while the blue circles indicate the error in the analysis.
The dashed lines indicate the mean absolute errors for the sensors shown.

IV. DISCUSSION

Our results show significant improvement by the OI for
the EM model. Improvements for the UASIBS model are
more modest. The reasons for this are as follows. UASIBS
is a more sophisticated satellite image to GHI model, so that
improvements are harder to obtain. In particular, the average
error values shown in the tables above differ from the large
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Fig. 4. UASIBS empirical cumulative distribution function. The black line
is the CDF of the observations, the red dashed-dotted line is the CDF of the
background, and the blue dashed line is the CDF of the analysis. The UASIBS
background does not predict clear-sky indices around 0.8 and does not extend
beyond 1.0. The analysis shows better agreement with the observed CDF.

improvements we have seen on many days, and illustrated in
Fig. 3. We suspect that average errors are likely to be affected
by large errors occurring only on some days due to parallax.

Parallax refers to the discrepancy between the actual loca-
tion of a cloud and the location tagged by a satellite [9]. The
GOES-W satellite is located at 135◦W on the equator while
Tucson, AZ is at roughly 32◦N and 110◦W, so the satellite is
viewing the clouds at an angle. The satellite geolocates each
pixel as if it were at the surface. This means that a cloud
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Fig. 5. The empirical cumulative distribution function for the EM model.
The black line is the CDF of the observations, the red dashed-dotted line
is the CDF of the background, and the blue dashed line is the CDF of the
analysis. The background EM model seems to make clouds thicker than they
are in reality. The analysis corrects much of this bias and changes the shape
of the CDF to more closely match the observations.

obscures a pixel that is to the NE of the cloud, so the actual
location of the cloud is to the SW of what the satellite tags
the pixel as. Thus, when the OI algorithm tries to compare the
observations with the background derived from the satellite
image, the observations and background may disagree about
whether a cloud is present at all.

This issue is illustrated in Fig. 6 where many sensors are
near the edges of the estimated clouds. Some of the sensors
locations that are reported as clear in the background are
actually cloudy. The OI algorithm tries to rectify this by
adjusting the areas that were clear in the background to be
cloudy. When we compare this analysis to the background
and adjusted visible albedo image, we see the analysis does
not look physical. If we shift the satellite image by a small
amount to the SW and rerun OI, we see that this shifted
analysis looks more like what one would expect given the
visible albedo image. This suggests that we first need to correct
the parallax issue before performing OI, and that the error
statistics calculated over 1200 image times are likely skewed
by these errors.

V. FUTURE WORK

We plan to improve this work in several aspects. An
important task will be to correct the issue of parallax that can
cause large errors in the OI analysis. We have experimented
with estimating the cloud top height and adjusting for parallax
on a pixel by pixel basis, but found this is challenging to do
well. In the future, we plan to group classes of clouds together
to then determine a height for each cloud group and shift the
group appropriately.

This work focused only on the area around Tucson, AZ.
One future experiment could examine how OI can improve
background estimates using observations that are very far apart
and may experience different weather conditions.

VI. CONCLUSION

There are a number of models to convert satellite images to
ground irradiance, and all are prone to errors. These satellite
derived irradiance images are important to many phases of PV
integration, from siting to forecasting the output of a fleet. We
describe how to improve the irradiance estimates using ground
data and optimal interpolation.

The optimal interpolation technique uses satellite derived
estimates of GHI, ground observations, and the associated
error estimates to produce a GHI estimate that has, on average,
better error statistics. An important consideration for the
method as described is the specification of the error correlation
between pixels in the satellite image. We propose using the
(almost) raw visible image from the satellite to correlate pixels
based on the cloudiness at each pixel. We apply this method to
a physically based satellite image to GHI model and show that
the distribution of the estimated GHI more closely matches the
data. Similarly, the method applied to an empirical satellite
image to GHI model removes a large bias from the GHI
estimate.

One limitation in the optimal interpolation method is that
errors in the estimated locations of the clouds in the satellite
GHI estimate can produce analysis images that are unreason-
able. Thus, future work will explore correcting this issue of
parallax or recognizing when this issue occurs so that optimal
interpolation can be avoided for those times. Other future work
includes producing a forecast from these improved satellite
derived GHI nowcasts.
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Fig. 6. Illustration of error due to parallax. The adjusted visible albedo image from the GOES-W visible channel, background clear-sky index estimate made
with the UASIBS algorithm, analysis after performing OI, and analysis after shifting the satellite image are shown. The green circles are the sensors used for
OI, the blue squares are the sensors used for error analysis, and the black circle in the center is the calibrated NREL MIDC sensor. We see that at sensor
locations near the edge of clouds in the background, the sensors and background disagree about whether it is cloudy. This causes the OI to fail as it tries to
rectify this discrepancy. If we shift the image slightly to the SW and redo the OI, we see that the sensors and background now better agree about whether
the area is cloudy so that the analysis after shifting looks more reasonable.
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