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Abstract

We describe and evaluate forecasts of solar irradiance using real-time measurements from a network of irradi-
ance sensors. A forecast method using cloud motion vectors obtained from a numerical weather model shows
significant skill over a standard persistence model for forecast horizons from 1 min to over 2 h, although the
skill metric may be misleading. To explain this finding, we define and compare several different persistence
methods, including persistence methods informed by an instantaneous spatial average of irradiance sensor
output and persistence forecasts informed by a time-average of recent irradiance measurements. We show
that spatial- or temporal-averaging reduces the forecast RMS errors primarily because these forecasts are
smoother (have smaller variance). We use a Taylor diagram, which shows correlation, RMSE, and variance,
to more accurately compare several different types of forecasts. Using this diagram, we show that fore-
casts using the network of sensors have meaningful skill up to 30 min time horizons after which the skill is
primarily due to smoothing.
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1. Introduction

The intermittency of solar power causes a cost to
utilities and, ultimately, rate payers (Joskow, 2011).
Solar power forecasts (Kleissl, 2013; Inman et al.,
2013) may reduce these costs by enabling utilities
to manage the variability of solar power in a num-
ber of ways. For example, forecasts can be used in
conjunction with battery storage systems to control
ramp-rates or provide frequency support (Hill et al.,
2012; Cormode, 2015). Additionally, forecasts will
provide utility grid operators with a prediction of
the expected photovoltaic (PV) output so they can
more efficiently schedule backup generators.

A number of different techniques are used to fore-
cast global horizontal irradiance (GHI). For forecast
horizons in the intra-minute to a few minute range,
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techniques with input data from several ground sen-
sors are often used (Achleitner et al., 2014; Elsinga
and van Sark, 2014; Yang et al., 2015; Lipperheide
et al., 2015).

For longer (intra-hour) forecast horizons, meth-
ods based on irradiance sensor networks (Lonij
et al., 2013), machine learning techniques (Chu
et al., 2015b), and sky imagers (Yang et al., 2014;
Chu et al., 2015a) are being actively studied. Satel-
lite image based forecasts are useful for 1-h to many
hours in advance (Perez et al., 2010; Bilionis et al.,
2014). For time horizons from several hours to up to
a week in advance, numerical weather models often
give the best predictions (Mathiesen and Kleissl,
2011; Diagne et al., 2014; Perez et al., 2013). Com-
binations of techniques are also being studied to ex-
tend the useful time horizon of a forecast (Marquez
et al., 2013; Lauret et al., 2014).

Networks of irradiance sensors overcome some
challenges typically associated with sky imagers or
satellite images. For example, data from networks
of irradiance sensors do not have the issue of con-
verting pixel brightness to irradiance as sky imagers
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and satellite image methods have. Sky imagers and
satellite images have the additional challenge of es-
timating cloud height to correctly project irradi-
ance at cloud height to a location on the ground.

In this paper, we describe GHI forecasts that uti-
lize a network of sensors placed throughout Tucson,
AZ for April, May, and June 2014. The ideas be-
hind this work are similar to those of Lonij et al.
(2013), however the data sources and implementa-
tion are different. The rooftop PV network in Lonij
et al. (2013) was limited to historical reports of 15
min average power, whereas the irradiance sensors
used in the present research report 1 s resolution
data with 1 min latency. This allows us to make
higher resolution and, as we will see, more accurate
forecasts.

We will show that our sensor network based fore-
casting method has significant skill when compared
to a clear-sky index persistence forecast from 1 min
to beyond 2 h time horizons. While the limited area
and density of the network likely limits the skill and
forecast horizon of our network-based forecasting
method, the geographic diversity of measurements
provide several advantages including improved per-
sistence estimations. We will also explore why the
forecasts exhibit such significant skill and explain
this result is due to smoothing after 30 min fore-
cast horizons.

First, we describe our network of irradiance sen-
sors. Then, we describe how we use the network
to make forecasts. A discussion of different types
of persistence forecasts follows. Finally, we present
and discuss our results and offer a concluding sum-
mary.

2. Irradiance Sensor Network Forecasts

Our forecasting method relies on a network of
sensors that sample the global horizontal irradiance
at a number of locations. Our network consists of 12
irradiance sensors we developed, plus three rooftop
PV power systems and one calibrated, commer-
cial sensor. The calibrated sensor is part of a Na-
tional Renewable Energy Laboratory (NREL) Solar
Resource and Meteorological Assessment Project
(SOLRMAP) site at the Univ. of Arizona (Wilcox
and Andreas, 2010). Converting the data to clear-
sky indices using an expected clear-sky profile for
each sensor allows us to combine sensors that mea-
sure different quantities to make forecasts. These
sensors are distributed throughout Tucson as shown
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Figure 1: Map of irradiance sensors used for this study in
Tucson, AZ. The red star indicates the position of the sensor
that was used to evaluate forecasts in Section 5. The sensor
was chosen because of its proximity to 25 MW of installed
PV power in and around the University of Arizona Science
and Technology Park Solar Zone. The forecast area extends
from 31.83◦ N to 32.28◦ N and 110.7◦ W to 111.15◦ W.

in Fig. 1. The irradiance sensors we developed col-
lect 1 s data and transmit it to a database every
minute via cellular data networks (Lorenzo et al.,
2014). Some use commercial pyranometers while
others use photodiodes. Since we use clear-sky in-
dices with data driven clear-sky profiles, the abso-
lute error of the sensor is not a concern. However,
the sensor used to evaluate the forecasted irradiance
is a commercial sensor (Apogee SP-212) and agrees
with the calibrated sensor to within 2% on average
on clear days. The data was plotted for each day
and for each sensor and verified by eye to provide
some measure of quality control. See Lorenzo et al.
(2015) for access to the dataset that was used in
this study.

The first step in making our forecasts is to con-
vert irradiance and PV power data to clear-sky in-
dex data. The clear-sky index for a sensor n at time
t is defined as

kn(t) =
yn(t)

yclrn (t)
(1)

where yn(t) is the measured data and yclrn (t) is the
clear-sky expectation. Clear-sky expectations for
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each sensor are generated by fitting the measured
data on a clear day in the recent past. An ad-
vantage of using this data-driven method of gen-
erating clear-sky expectations rather than a clear-
sky model, such as the REST2 model (Gueymard,
2008) or Ineichen model (Ineichen and Perez, 2002),
is that the data-driven method inherently accounts
for sensor orientation, permanent obstacles, and
sensor calibration errors. Furthermore, because our
forecasting method relies on forecasting clear-sky
index and then converting back to irradiance as a
final step, the changes in atmospheric conditions
between clear-sky days are not a major source of
error in our final forecasts.

Next, we use the clear-sky indices to interpolate
the scattered data onto a 1400 km2 clear-sky index
map for the Tucson region. To generate a clear-
sky index map, we first create a 0.001◦ grid (with
grid points approximately every 100 m) and add
the sparse data from our network to the grid. We
then set points along each boundary of the grid to
the average of the clear-sky index values obtained
from all the sensors. As we will see in Sections 4.4
and 5, this boundary condition helps to maintain
forecast skill at longer time horizons.

Next, we fill all points in the grid with interpo-
lated values as shown in Fig. 2. We chose to use
multiquadric interpolation because it performs well
at interpolating scattered geospatial data (Franke,
1982; Nuss and Titley, 1994), and it was more ro-
bust with our sparse data. We did not use a krig-
ing method, even though kriging is often used to
interpolate geospatial data, because we lack suf-
ficient data to adequately estimate the variogram
(Webster and Oliver, 1993; Sirayanone, 1988). We
also explored inverse distance weighted interpola-
tion, but found the output to be similar to multi-
quadric interpolation with insignificant differences
in forecast errors (typically < 3 W/m2 difference in
the root mean square error for all forecast horizons).

Then, we translate this interpolated clear-sky
map a distance determined by the cloud motion vec-
tors (which may vary in time). The translation in
the x direction, with the y translation being analo-
gous, is given by

∆x(ti, t) =

∫ t

ti

vx(t′)dt′, (2)

where ti is the time at which the forecast is being
made, t− ti is the forecast horizon, and vx(t) is the
x component of the time-varying cloud motion vec-
tor. Any grid points that are missing data after the

translation are filled with the average clear-sky in-
dex for all the sensors. Figure 2 shows an example
of an interpolated clear-sky index map and a map
that has been shifted along the estimated cloud mo-
tion vector. Finally, we sample from this translated
map at the desired forecast locations to obtain a
forecasted clear-sky index which can be multiplied
by the clear-sky expectation for that location to
obtain an irradiance forecast. As we will discuss,
for sufficiently long forecast horizons this procedure
makes our network based forecasts indistinguish-
able from spatially-average persistence forecasts.

Forecasts out to 2 h in advance with 1 min time
resolutions were made every 1 min for this anal-
ysis. As an example, one hour’s worth of 5 min
ahead forecasts along with measurements are shown
in Fig. 3. This time-series is a composite show-
ing snapshots (individual points) from 120 different
forecasts that were each made 5 min in advance on
a rolling basis. Concatenating points from different
forecasts this way for several months lets us evalu-
ate errors for forecasts with a 5 min horizon. Fur-
thermore, updating forecasts every 1 min is valu-
able since 1 s data is constantly streaming into our
database and each forecast has some new informa-
tion that will likely improve the prediction for a
specific time in the future. Later, we discuss errors
as function of forecast horizon.

For estimating cloud motion velocity vector com-
ponents (vx, vy), several techniques have been dis-
cussed including sensor correlations (Fung et al.,
2014; Bosch et al., 2013), predictions from NWP
(Lave and Kleissl, 2013; Lonij et al., 2013), anal-
ysis of aircraft communications addressing and re-
porting system (ACARS) or rawinsonde data, scal-
ing of measured ground velocity, analysis of sky
camera images (Urquhart et al., 2013), and anal-
ysis of satellite images (Hammer et al., 1999). For
our analysis, we used modeled soundings (atmo-
spheric temperature and dewpoint as a function of
altitude/pressure) from the Weather Research and
Forecasting (WRF) model run by the Univ. of Ari-
zona, Dept. of Atmospheric Sciences (Leuthold,
2015). First, we compute a profile of relative hu-
midity as a function of altitude averaged over the
Tucson area from the WRF model. To estimate the
cloud motion vectors, we find the altitude at which
relative humidity is greatest (dashed line in Fig. 4),
similar to Lave and Kleissl (2013). We then find all
nearby heights that have a relative humidity that
is within 90% of the maximum (shaded area in Fig.
4). The wind speed and direction is then averaged
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Figure 2: An example interpolated map of clear-sky index on 5/19/14 near noon is shown in a). Using the estimated cloud
motion vectors this map is shifted according to desired forecast horizon as shown in b). Then, samples from this shifted map
are taken to as the forecasted clear-sky index for a particular location. The white space at bottom and left of b) is filled in
with the average clear-sky index of all sensors at the time the forecast is generated. The red star indicates the sensor that was
used to evaluate forecasts.

for these altitudes and over the entire Tucson area
to provide an estimated cloud motion vector. A
new cloud motion vector is estimated in this way
from each hourly output of the WRF model and
then interpolated to 1 min time resolution. This
simple estimation method has a number of limita-
tions including only recognizing a single cloud layer
and possibly selecting the wrong layer of the at-
mosphere i.e. one in which there are no clouds.
This cloud motion estimation method along with
the modest size and density of our network likely
limits the overall accuracy of the network based
forecasts presented here. Still, this network based
method produces forecasts with lower errors than
several standard persistence methods, as we discuss
next.

3. Error Metrics

We assessed the accuracy of forecasts using stan-
dard error metrics that are defined in Zhang et al.
(2015). Each error metric is computed for fore-
cast horizons, FH, ranging from 1 min to 30 min
(FH = 0, 1, ..., 30) by comparing forecasts, yFH(ti),
to subsequent instantaneous measurements, y(ti),

of a single irradiance sensor. Errors were only com-
puted when the solar zenith angle was less than
75 degrees. Unless otherwise noted, only the 46
cloudy days in the study period were used to cal-
culate error metrics and each metric is computed
over this entire cloudy data set. Data and forecasts
for a sensor (star in Fig. 1) in the middle of the
network and near many large PV installations were
used. Comparisons are always made with an in-
stantaneous measurement, not averaged data, even
when the forecast uses averaging.

In addition to root-mean squared error (RMSE)
and mean absolute error (MAE), we also compute
the centered root-mean squared error (CRMSE) for
irradiance

CRMSE(FH) =

(
1

N

N∑
i=1

[
(yFH(ti) − ȳFH)

− (y(ti)− ȳ)]
2

)1/2

, (3)

where an overbar indicates the sample mean of the
quantity (Taylor, 2001). The CRMSE removes fore-
cast bias and will become important later.

We also compute errors for forecasted clear-sky
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Figure 3: An example of a 5 min ahead network forecast
compared to measured data. Forecasts were generated every
1 min and the forecast for 5 min in the future is shown. The
forecast and measurements at 12:00 show excellent agree-
ment. For reference, the MAE for this entire period is 105
W/m2 and the RMSE is 140 W/m2, and for 11:45 to 12:00
the MAE is 68 W/m2 and the RMSE is 82 W/m2.

indices. This is valuable because, as opposed to
irradiance, clear-sky index errors are not weighted
based on the position of the sun in the sky.

We also define relative metrics in terms of clear-
sky indices in order to present errors in percentages.
The relative RMSE is

rRMSE(FH) = k̄−1

(
1

N

N∑
i=1

(
kFH(ti)

−k(ti))
2

)1/2

. (4)

Relative MAE is similarly defined as

rMAE(FH) = k̄−1
1

N

N∑
i=1

∣∣kFH(ti)− k(ti)
∣∣ . (5)

Following the method of Marquez and Coimbra
(2012), we can approximate forecast skill s as

s(FH) ≈ 1− RMSE(FH)

RMSEp(FH)
(6)

where RMSEp is the RMSE for a clear-sky persis-
tence forecast, described in Section 4.2. To esti-
mate the average skill over many days, the ratio
RMSE
RMSEp

is estimated by the slope of the regression

fit of daily RMSE vs RMSEp. The average skill is
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Figure 4: Example vertical profiles of relative humidity and
wind speed made by a numerical weather model on 5/19/14
at noon. To find the altitude at which clouds are most likely
to form, we find the height with the greatest relative humid-
ity (red dashed line). The winds at this height and heights
within 90% of the maximum relative humidity (red shaded
area) are averaged to produce an estimate of the cloud mo-
tion vector.

then 〈s〉 = 1 − slope. Examples of these plots and
regressions are presented in Fig. 11.

4. Persistence Forecasts

Persistence forecasts are the simplest type of fore-
cast to implement and are often the most accurate
at very short time horizons, making them a stan-
dard to compare with other methods. In this sec-
tion we describe and compare the persistence fore-
casts we use for irradiance forecasting.

Before describing the various types of persistence,
we first define the terminology we will use. The
measured quantity of sensor n (e.g. irradiance) at
time t will be denoted by yn(t). The forecast of
sensor n at some time t + FH in the future will
be denoted by y∗n(t + FH). As mentioned in Sec.
3, we call FH the forecast horizon. The clear-sky
expectation for a particular sensor will be denoted
yclrn and the value of the clear-sky expectation at
time t is yclrn (t).
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4.1. Measurement Persistence

We call one of the simplest persistence methods
“measurement persistence.” A measurement per-
sistence forecast simply assumes that the irradiance
at a future time will be the same as it is at the cur-
rent time. Measurement persistence is defined by

y∗n(t+ FH) = yn(t). (7)

This type of persistence is useful for short time hori-
zons, but it does not account for the diurnal cy-
cle of irradiance due to changing solar position and
this leads to large errors at longer time horizons as
shown in Fig 5.

4.2. Clear-Sky Index Persistence

In this method, the clear-sky index is calculated
at the current time and persisted into the future.
A forecast of irradiance is obtained by multiplying
this clear-sky index by the value of the clear-sky
expectation at the forecast time. The equation for
clear-sky index persistence is

y∗n(t+ FH) =
yclrn (t+ FH)

yclrn (t)
× yn(t). (8)

This method performs better than measurement
persistence because it takes into account the diurnal
cycle of irradiance, but it does require that a clear-
sky expectation for the sensor, yclrn (t), be known or
modeled appropriately.

4.3. Time-Averaged Persistence

At time horizons greater than a few minutes, it
can be beneficial to first average the measured clear-
sky index over some time period defined by N time
steps, each with period ∆t, ending at some past
time t0. This average clear-sky index is then mul-
tiplied by the clear-sky expectation of the target
sensor to compute a forecast. Time-averaged per-
sistence is thus computed as

y∗n(t+ FH) =yclrn (t+ FH)

× 1

N

N−1∑
i=0

yn(t− t0 − i∆t)
yclrn (t− t0 − i∆t)

. (9)

Often, a rolling averaged is used so t0 = 0, ∆t is
the time resolution of the measured data, and N
is chosen so (N − 1)∆t gives the desired averaging
time. The total averaging time does not limit the
frequency with which forecasts can be made. For
example, a 5 min rolling average persistence can

recomputed every 1 min and still provide a useful
forecast since new data is incorporated every time a
forecast is made. An example of time-averaged per-
sistence error with different averaging times using
a rolling average is shown in Fig. 6.

4.4. Spatially-Averaged Persistence

If multiple measurements of irradiance are avail-
able in an area, one can make a persistence forecast
based on the average clear-sky index of all the sen-
sors. We refer to this method as spatially-averaged
persistence. To make these forecasts, the mea-
surements of multiple sensors are first converted
to clear-sky indices using clear-sky expectations for
each sensor. Then, these clear-sky indices are av-
eraged together. This average clear-sky index is
then multiplied by the clear-sky expectation of the
target sensor to produce a forecast for that sensor.
Using N sensors, the spatially-averaged persistence
for sensor n is

y∗n(t+ FH) = yclrn (t+ FH)× 1

N

N∑
m=1

ym(t)

yclrm (t)
. (10)

This method does not perform as well as clear-
sky index persistence or measurement persistence
at time horizons under a few minutes, as shown
in Fig. 5, but it is more accurate (according the
RMSE metric) than other persistence methods dis-
cussed here at longer (2 - 30 min) forecast horizons.

One could also imagine replacing the simple mean
in Eq. (10) with a weighted mean by, for example,
using the lasso (Yang et al., 2015) or some other
shrinkage and selection method. Time and spatial
averaging can also be combined as discussed in Sec.
5.1

5. Results

We now present the results of the network and
persistence forecasts using metrics defined in Zhang
et al. (2015) and Sec. 3 for the study period of
April, May, and June 2014. First, we evaluate per-
sistence forecasts. Then, we study network forecast
errors in depth. Finally, we compare network fore-
casts to other irradiance forecasting methods.

5.1. Persistence Forecast Results

Root-mean squared errors from the four types of
persistence forecasts described above are plotted in
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Figure 5: Comparison of different types of persistence fore-
casts. RMSE, plotted as a function of forecast horizons, was
computed for each type of forecast using data from the 46
cloudy days as described in Sec. 3. Spatially-averaged per-
sistence has the lowest RMSE for all but the very shortest
forecast horizons.

Fig. 5. We see that for the 46 cloudy days we stud-
ied in Tucson, AZ., the two types of input averag-
ing, spatial and temporal, both improve forecasts
compared to clear-sky index persistence after time
horizons of a few minutes. The crossover time de-
pends on the weather. As expected, clear-sky index
persistence performs better than measurement per-
sistence because it accounts for the diurnal cycle.

Though Fig. 5 shows spatially-averaged persis-
tence outperforming time-averaged persistence, the
averaging time and number of sensors averaged can
change these curves significantly. Figures 6 and 7
show various averaging times and number of sensors
in the average, respectively. We see that longer av-
eraging times reduce errors at time horizons greater
than 5 min but are worse at shorter time hori-
zons. The common auto-regressive moving average
(ARMA) model similarly weights previous values
and/or errors to produce a forecast. We also see
that adding more sensors to a spatially-averaged
persistence reduces errors except at time horizons
shorter than a few minutes.

One explanation for our finding that spatially-
averaged persistence performs better than time-
averaged persistence is related to the number of di-
mensions in each average. Using kinematics (x =
vt) we can map the time series yi(t) onto a one-
dimensional transect in space downwind from the
sensor. In comparison, the spatial average uses data
from locations that are distributed in two dimen-
sions including some locations that are upwind of
the location of interest. By averaging over two di-
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Figure 6: Comparison of time-averaged persistence forecasts
with different averaging times. The averages shown are made
via a rolling average (t0 = 1) with ∆t = 1 s and N adjusted
for each curve to give the appropriate total averaging time
as described in Sec. 4.3. Longer time averages reduce errors
at longer time horizons.
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Figure 7: Comparison of spatially-average persistence fore-
casts with a varying number of sensors averaged. Adding
more sensors to the spatial average improves the forecast
RMSE.

mensions, not one, spatial average persistence effec-
tively uses more independent samples of the cloud
field. This theory assumes that all sensors are sub-
ject to the same cloud field, which is reasonable for
the size of our network.

When we average the input data over both space
and time, as shown as the green line in Fig. 8, we
find the RMSE is lower at longer time horizons.

5.2. Network Forecast Results

We now compare our network forecasts to a clear
sky (k∗n(t) = 1) forecast, measurement persistence,
clear-sky index persistence, and spatially averaged
persistence (using the same 16 sensors which were
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Figure 8: Comparison of a persistence forecast made by first
averaging over space and then averaging over time (green
line) to other persistence methods. Averaging in time and
space marginally improves forecasts at longer time horizons.

used to make the network forecast). Figure 9 shows
the MAE for these methods for only cloudy days
while Fig. 10 shows the RMSE. Plots of CRMSE
show similar trends. Note that network forecasts
have nonzero error at zero forecast horizons because
of the smoothing applied when making the interpo-
lated clear-sky index map and due to limiting the
maximum forecasted clear-sky index to 1.25. We
see that network forecasts have lower MAE than
other methods for time horizons from 1 min to 30
min. We only graph up to 30 min forecast horizons
because the 30 min to 2 h errors are similar and
uninteresting. Figure 10 shows that the network
forecasts have lower RMS errors than the other
methods at forecast horizons less than about 4 min
and then have slightly higher RMSE values than
spatially-averaged persistence. This difference be-
tween RMSE and MAE suggests that network fore-
casts have fewer small errors but more large errors
than spatially-averaged persistence forecasts. For
completeness, we also present error metrics for all
91 days in the study period in Appendix A. Clear
days show similar trends but with smaller errors
which lowers the 91 day average RMSE by 40-50%
depending on the time horizon.

We also compute forecast skill as defined by Mar-
quez and Coimbra (2012). Figure 11 illustrates the
regressions used to calculate the average skill of our
forecasts. At low clear-sky index persistence RMSE
values (e.g. clear days), we see that the skill is neg-
ative (network RMSE > clear-sky index persistence
RMSE). For days with larger clear-sky index persis-
tence RMSE values, we see that our network fore-
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Figure 9: MAE of many types of forecasts averaged over 46
cloudy days. Clear sky refers to a forecast where one assumes
the sky is always clear (k∗n(t) = 1). Network forecasts have
the lowest MAE at all time horizons shown.

0 5 10 15 20 25 30
Forecast horizon (min)

0

50

100

150

200

R
M

SE
 (W

/m
2

)

RMSE of multiple forecast methods

clear sky
measurement pers.
clear-sky pers.
spatial avg. pers.
network

Figure 10: RMSE of many types of forecasts averaged over
46 cloudy days. Clear sky refers to a forecast where one
assumes the sky is always clear (k∗n(t) = 1).

casts have positive skill. The average skill found
from regressions, typically 20%, is plotted in Fig.
12 as a function of forecast horizon.

5.3. Exploration of Forecast Errors

The forecast skill of the network-based forecasts
remains at a surprising +20% at time horizons
through 2 h. This was unexpected because the fi-
nite domain of the network is usually transited by
clouds in 10 to 20 min. To explain this finding, we
revisited the underlying statistics of forecast skill.
The root mean squared error can be written as

RMSE =
√
σ2
f + σ2

o − 2σfσoρ+ MBE2 (11)
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where σf is the forecast standard deviation, σo is
the measurement standard deviation, ρ is the corre-
lation coefficient, and MBE is the mean bias error
(Taylor, 2001). When correlations and biases are
small, the RMSE reduces to a sum in quadrature
of the observation and measurement standard devi-
ations. Under these conditions, a smoother forecast
will have a lower RMSE, and thus a more positive
forecast skill, than a more variable forecast. Of
course, this does not mean that the smoother fore-
cast is more skillful under most definitions of the
word.

As an alternative means of understanding the rel-
ative merits of our forecast methods, we turned to
Taylor diagrams (Taylor, 2001). The Taylor dia-
gram in Fig. 13 shows the CRMSE, correlation
coefficient, and standard deviations of clear-sky in-
dex forecasts for each forecast method. Here, we
analyzed forecasts of clear-sky index instead of ir-
radiance so all values are dimensionless. The solid
contour lines are lines of constant CRMSE. We
see that network forecasts have correlations greater
than or approximately equal to spatially-averaged
persistence but with higher standard deviation.
This means network forecasts capture more vari-
ability. Network forecast standard deviation tran-
sitions from performing like clear-sky index persis-
tence forecasts at short time horizons to approach-
ing spatially-averaged persistence, analogous to the
transitions for MAE and RMSE in Figs. 9 and 10.
At roughly 30 min forecast horizons, network fore-
casts behave about the same as spatially-averaged
persistence forecasts as we expect based on the
method used and average cloud velocities. Hence,
we say that our network forecasts are more useful
than simple spatial averaging for forecast horizons
less than 30 min. Regardless of their forecast skill
metric scores, assessing the utility of network and
spatial-average persistence forecasts past 30 min is
challenging. We therefore suggest that researchers
restrict their use of forecast skill to methods which
have similar mean bias errors and standard devia-
tions.

Figure 13 also shows how network and spatially-
averaged persistence forecasts always have lower
RMSE than clear-sky index persistence after a cer-
tain horizon. This is a result of the combination
of lower standard deviation and higher correlation
for the network and spatially-averaged persistence
forecasts. This trend holds for even longer forecast
horizons. Unfortunately, Eq. (11) does not simplify
for the forecasts and data shown here so both corre-

lation and standard deviation need to be considered
to understand RMSE.

5.4. Limitations and Comparisons to Other Work

One limitation of the current network algorithm
is that it does not account for multiple cloud lay-
ers. Satellite images from many of the studied days
confirm that multiple cloud layers were moving in
different directions. We also studied incorporating
data from times in the past appropriately shifted
by cloud motion vectors but found no noticeable
improvement, likely due to this complex motion.

On a day with a single cloud layer coming from
the southwest shown in Fig. 14, we see that a single
upstream sensor greatly improves network forecasts
at around the 7 min forecast horizon. This demon-
strates that the network method can perform quite
well if the velocity of the clouds is well defined and
the sensors are appropriately located.

Another limitation is the size of the irradiance
network. Depending on the wind motion vectors
clouds can pass from the edge of the network to
the center in 10 min. Since the boundary is set
to the spatial average of sensors, network forecasts
converge to spatially averaged persistence.

Still, our current method of network forecast-
ing performs as well as or better than both clear-
sky index and spatially-averaged persistence. Error
statistics for network forecasts for cloudy days are
presented in Table 1.

When we compared our current network method
and high resolution data with the previous work of
Lonij et al. (2013), we see that our new method
performs favorably. Lonij et al. use a network of
80 rooftop PV systems in the Tucson area with 15
min averaged power data to make short-term fore-
casts of power. Their method uses a similar cloud
translation method as this work, but wind vectors
are obtained from NOAA forecasts, via optimiza-
tion of the wind vector to minimize RMS forecast
errors, or via a Kalman filter applied to optimized
vectors. At 15 and 30 min forecast horizons, the
best forecasts of Lonij et al. had skills of -8.0% and
2.4%, respectively, while our new method has skills
of 17.7% and 21.2%. Even compared to the opti-
mized “forecasts” (which were not true forecasts)
with skills of 1.6% and 34.5% at 15 and 30 min, our
new method performs well. We only used 3 months
of data from our real-time network while Lonij et
al. used one year of data.

Chu et al. (2015b) produced a cloud tracking
forecast of PV power with an ANN applied to a de-
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Table 1: Summary of error statistics for network forecasts for the 46 days with clouds. Error statistics were calculated for the
entire dataset at once. Only forecasts and data with solar zenith angle less than 75◦ were used. The mean irradiance was
ȳ = 662 W/m2 and the mean clear-sky index was k̄ = 0.92.

FH rMAE (%) MAE (W/m2) MBE (W/m2) rRMSE (%) RMSE (W/m2) Avg. skill (%)

1 min 4.96 30.97 -1.44 11.90 82.55 22.96
3 min 7.51 48.13 -1.39 15.89 110.46 23.09
5 min 9.29 59.59 -3.91 18.67 127.06 19.65
10 min 11.39 71.38 -8.59 22.11 141.44 18.63
20 min 13.23 82.39 -10.46 24.03 152.84 18.66
30 min 13.95 86.57 -7.52 24.49 154.15 21.21
60 min 15.45 95.59 -6.65 26.59 160.72 21.00
120 min 17.02 106.51 -2.01 29.20 172.45 19.58

terministic forecast using a sky imager at a site near
the Nevada/Arizona border. The initial determinis-
tic forecast model does not perform well compared
to persistence, with negative skills at 5, 10, and
15 min forecast horizons. However, the re-forecast
using an ANN technique improves the result with
skills of 15.1%, 21.8%, and 26.2% at forecast hori-
zons of 5, 10, and 15 min respectively, which are
comparable to our technique. Similar optimization
could be applied to our deterministic network fore-
casts to further improve skill. A Taylor diagram
of both the initial deterministic forecast and ANN
re-forecast would be useful as another method to
assess the forecasts.

Compared to the regression methods in Yang
et al. (2015), our forecasts perform comparably at
the 5 min forecast horizon. Yang et al. used 1 s ir-
radiance data from Oahu and applied the lasso and
ordinary least squares regression methods to make
very short term (< 5 min) forecasts. At shorter
horizons, both methods can outperform the refer-
ence persistence forecast. Since our forecasts ap-
proach the clear-sky index persistence model, re-
gression methods are likely a better choice if sub-
five minute time horizons forecasts are needed, at
least for the region studied here.

6. Conclusion

We presented a deterministic method to forecast
irradiance that uses data from a network of irradi-
ance sensors as the primary input. This method can
combine the benefits of clear-sky index persistence
and spatially-averaged persistence into one forecast.
It outperforms a reference clear-sky index persis-
tence model for 1 to 120 min forecast horizons.

Much of this improvement is due to spatial aver-
aging, which shows surprising utility for the region
and time period studied. However, network fore-
casts still exhibit more variability than spatially-
averaged persistence, thus we claim network fore-
casts are better at forecasts horizons less than 30
min. The results presented here used numerical
weather model winds at a single layer of the at-
mosphere to perform cloud advection, so complex
cloud movement or incorrect cloud motion vectors
likely limited the accuracy. The limited size and
density of the network also limits the accuracy of
network forecasts.

We showed that forecast skill can be a mislead-
ing metric, and we instead used a Taylor diagram
to better understand the differences among forecast
methods. This lead us to reinterpret our finding
that network forecasts show significant skill to 2 h
forecast horizons so now we make a more informed
claim that network forecasts show meaningful skill
out to 30 min forecast horizons. We encourage
other authors to make use of Taylor diagrams when
assessing the quality of forecasts.

While the method presented may have a limited
useful maximum forecast horizon, the irradiance
sensor network will be a valuable asset to make
other types of forecasts. For instance, regression
methods using a network can improve very short
time horizon forecasts (Yang et al., 2015). In the fu-
ture, we could use the network of sensors to improve
satellite image forecasts similar to Marquez et al.
(2013) and to validate numerical weather model
forecasts. We may also study how different inter-
polation methods affect the results of our network-
based forecasting method in a detailed comparison.
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Appendix A. Analysis for both clear and
cloudy days

Table A.2 presents error statistics calculated over
all 91 days in the study period. As expected, the
magnitude of errors is smaller when more clear days
are included.

Appendix B. Supplementary Material

Location metadata, measurements, clear-sky ex-
pectations, and cloud motion vectors used in this
study have been released online under the CC-BY-
NC 4.0 license (Lorenzo et al., 2015).
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Table A.2: Summary of error statistics for network forecasts for all 91 days. Error statistics were calculated for the entire dataset
at once. Only forecasts and data with solar zenith angle less than 75◦ were used. The mean irradiance was ȳ = 694 W/m2

and the mean clear-sky index was k̄ = 0.96.

FH rMAE (%) MAE (W/m2) MBE (W/m2) rRMSE (%) RMSE (W/m2) Avg. skill (%)

1 min 2.92 18.40 -0.97 8.84 61.67 22.54
3 min 4.40 28.31 -1.69 11.71 81.31 22.77
5 min 5.43 35.09 -4.05 13.70 93.09 19.36
10 min 6.76 42.90 -8.48 16.19 103.53 18.33
20 min 7.78 49.06 -9.79 17.58 111.76 18.43
30 min 8.16 51.35 -8.43 17.91 112.73 20.97
60 min 8.97 56.41 -7.88 19.44 117.55 20.74
120 min 9.89 62.72 -4.75 21.34 126.16 19.33
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Figure 11: Network RMSE vs clear-sky index persistence RMSE for all days and 5, 10, 15, and 30 min forecast horizons
calculated for clear-sky indices. The slope of the best fit line is used to approximate the skill of the forecasts. Each point
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