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Abstract

We introduce a computational framework to forecast cloud index (CI) fields for up to one hour on a spatial
domain that covers a city. Such intra-hour CI forecasts are important to produce solar power forecasts of
utility scale solar power and distributed rooftop solar. Our method combines a 2D advection model with
cloud motion vectors (CMVs) derived from a mesoscale numerical weather prediction (NWP) model and
sparse optical flow acting on successive, geostationary satellite images. We use ensemble data assimilation
to combine these sources of cloud motion information based on the uncertainty of each data source. Our
technique produces forecasts that have similar or lower root mean square error than reference techniques
that use only optical flow, NWP CMV fields, or persistence. We describe how the method operates on three
representative case studies and present results from 39 cloudy days.
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1. Introduction

Power grid management requires that solar power
generation be predicted accurately (Kleissl, 2013).
Intra-hour solar power forecasts require accurate
predictions of clouds on small spatial and tempo-5

ral scales. Forecasting on intra-hour time scales re-
quires computationally efficient methods (an intra-
hour forecast that takes more than a few minutes
to compute is not useful).

We describe a computational framework for10

intra-hour cloud index (CI) forecasts based on a
2D advection model with random perturbations.
We study a region, centered on Tucson, AZ, that
contains 385 MW of solar power capacity (TEP,
2018). The advection of CI is driven by cloud15

motion vectors (CMVs) from satellite images and
a mesoscale numerical weather prediction (NWP)
model that are combined using data assimilation
(DA). We use DA to assimilate CMVs derived from
optical flow (Horn and Schunck, 1981; Lucas and20

Kanade, 1981), applied to successive geostation-
ary satellite images every 15 minutes and CMV

∗Corresponding author
Email address: travisharty@math.arizona.edu

(Travis M. Harty)

fields derived hourly from a mesoscale NWP model.
These two data sources are assimilated into a back-
ground ensemble that is initialized with a NWP25

CMV field. We refer to the system as ANOC for
the Assimilation of NWP winds and Optical flow
CMVs.

Generically, DA is a Bayesian technique to up-
date numerical models using sparse and noisy obser-30

vations (Reich and Cotter, 2015; Asch et al., 2016).
We use an ensemble Kalman filter (EnKF) (see,
e.g., Evensen (2009)) to perform our assimilations.
EnKFs are computational tools for DA where fore-
cast uncertainty is represented by an ensemble.35

Optical flow is a method to determine a veloc-
ity field from consecutive scalar fields. Numerical
methods for optical flow can be divided into two
categories: dense optical flow (Horn and Schunck,
1981), where an entire vector field is produced,40

and sparse optical flow (Lucas and Kanade, 1981),
where point estimates of a vector field are produced.
We use both dense and sparse optical flow to deter-
mine CMVs in this study.

Advection of satellite-derived cloud properties for45

intra-hour CI or irradiance field forecasts for solar
power applications has been considered in several
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studies (Kleissl, 2013). A mean squared error min-
imization method (Lorenz et al., 2004; Wolff et al.,
2016), optical flow (Nonnenmacher and Coimbra,50

2014; Peng et al., 2013), neural networks (Côté and
Tatnall, 1995) and a Monte Carlo method (Hammer
et al., 1999) have been used to derive CMVs from
successive cloud images. Advection based forecasts
with CMV fields derived from NWP models are55

described in Miller et al. (2012, 2017); Descombes
et al. (2014). The ANOC system we describe in this
paper uses DA to combine CMVs from an NWP
model and CMVs derived from optical flow.

Previous works also explore combinations of dif-60

ferent irradiance forecasts. For example, (Wolff
et al., 2016) use support vector regression to gen-
erate irradiance forecasts from a combination of
ground measurements, satellite advection via CMV
fields, and NWP irradiance forecasts. Haupt et al.65

(2018), combine several different irradiance fore-
casting models (statistical methods based on sur-
face measurements, satellite advection, NWP) us-
ing the statistics of the historical performance of
each of the different forecasting methods.70

Meteorologists use DA to assimilate CMVs into
NWP models as observations of atmospheric flow.
These CMVs are often obtained using a cross-
correlation or mean squared error minimization
method and are most useful over remote regions,75

e.g. oceans, where direct observations are not avail-
able (Menzel, 2001; Nieman et al., 1997).

The ANOC system uses DA with a conceptually
intuitive and computationally inexpensive 2D ad-
vection model. The 2D advection model produces80

forecasts that are easy to understand and allows for
DA to be implemented in a clear way. The compu-
tational savings compared to a full 3D model allows
us to forecast at shorter time scales and also allows
for ensemble forecasts and ensemble based DA. This85

allows us to assimilate CMV data into our ensemble
taking the certainty in each source of data into ac-
count. This approach is inspired by Lorenzo et al.
(2017) where DA is used to combine ground sensors
with clear-sky index fields derived from geostation-90

ary satellite images.
The remainder of the paper is organized as fol-

lows. In Section 2 we introduce the satellite im-
agery and NWP model we use. In Section 3 we
describe the operation of the ANOC system. In95

Section 4 we briefly describe reference forecast that
we compare to the ANOC system. In Section 5
we describe how ANOC functions in the context of
three case studies. In Section 6 we present results

computed over 39 days. Section 7 contains our con-100

cluding remarks.

2. Satellite imagery and numerical weather
model

The ANOC forecasting system combines geosta-
tionary satellite images and winds from a mesoscale105

NWP model. The domain of interest is 40 km from
west to east and 56 km from south to north con-
taining Tucson, AZ (see Section 3). To produce
forecasts in this domain of interest, we consider an
area centered on Tucson, AZ, that is 360 km on each110

side. We study the time period of April, May, and
June 2014, with each day starting at 16:30 UTC
(9:30 MST) and ending at 22:30 UTC (15:30 MST).

2.1. Satellite data
We use images taken by the GOES-15 geostation-115

ary satellite located in the GOES-West position.
Satellite images are usually available every 15 min-
utes, though the time between satellite images is
sometimes longer. For simplicity, we will refer to
satellite images being available every 15 minutes.120

We use the visible band at a spatial resolution of ap-
proximately 1 km. The latitude and longitude coor-
dinates of the satellite image are converted to kilo-
meters with the Lambert conformal conic projec-
tion (Snyder, 1987). The result is interpolated onto125

a regular square 1 km2 grid with nearest neighbor
interpolation. The satellite images are downloaded
from the Comprehensive Large Array-data Stew-
ardship System (CLASS) (NOAA, 2018). Anima-
tions of the satellite images are available in Harty130

(2018).
The pixel values of a satellite image are converted

into CI following in part the methods described in
Perez et al. (2002). First, the pixel value is normal-
ized:135

norpix = pix · am · soldist, (1)

where pix is the raw satellite pixel, am is the abso-
lute airmass, and soldist is the Earth-Sun distance
in astronomical units. The normalized pixel value
(norpix) is converted into a cloud index (CI) value:

140

CI = norpix− low
high− low , (2)

where high is equal to the mean of the 20 highest
norpix values over a three months window, and low
is calculated as follows. The method presented in
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Perez et al. (2002) uses one value for low for the en-
tire day. We modify the method and use different145

values for low throughout the day to remove ad-
ditional surface albedo. For each time of day, low
for that time is calculated as the mean of the 40
lowest norpix values for that time of day over the
same three month window as high. When calculat-150

ing low and high we use all three months of satellite
data, meaning that the resulting CI fields could not
have been used to create true forecasts. This prob-
lem can be mitigated by using a sliding window of
past satellite images to calculate high and low (as155

is done in Perez et al. (2002)), rather than using
the full three months of satellite images. We do not
do so here because we anticipate only minor differ-
ences, and because it would require more data and
computation.160

After calculating the CI field, it is linearly in-
terpolated onto a square grid with a resolution of
250 m2 that is used in ANOC for 2D advection.

2.2. Numerical weather prediction model
We use the wind and relative humidity fields from165

the operational forecasts of the University of Ari-
zona Department of Hydrology and Atmospheric
Sciences. The forecast system uses the Weather Re-
search and Forecasting (WRF) model with an outer
domain covering the western US with a 5.4 km hor-170

izontal grid spacing, and an inner domain covering
Arizona with a 1.8 km horizontal grid spacing. We
use forecasts that are initialized at 12Z with the
Global Forecast System (GFS) data produced by
the National Centers for Environmental Prediction175

(NCEP). We use this model because it is readily
available to us, but we expect our approach will
perform similarly with a different mesoscale NWP
model.

3. The ANOC forecast system180

We summarize the operation of the Assimilation
of NWP winds and Optical flow CMVs system
(ANOC). The ANOC system uses an ensemble of
size 20. Each ensemble member consists of a CI
field and a corresponding CMV field with u (west185

to east) and v (south to north) components over a
given spatial domain (see Section 3.1). A 2D advec-
tion model advects the CI component of each en-
semble member using the CMV component of the
ensemble member (see Section 3.2). The CMV in-190

formation is derived from sparse optical flow (see

Section 3.3), as well as from the NWP model (see
Section 3.4). DA is used to combine these two
sources of information with the CMV component
of the ensemble (see Section 3.5).195

The ANOC system is started every day at 16:30
UTC (9:30 MST) with an initial ensemble (see
Section 3.6). The system runs until 22:30 UTC
(15:30 MST). Using satellite images from this win-
dow (centered around solar noon) eliminates time200

periods with low solar elevation angles that could
complicate this proof of principle study. A detailed
overview of the ANOC forecast system is shown in
Fig. 1.

3.1. ANOC domain and computational domain205

ANOC produces CI forecasts for a region cen-
tered around Tucson, AZ, whose sides are 40 km
from west to east and 56 km from south to north.
The computational domain includes the region
around Tucson and is defined to be large enough to210

avoid the advection of boundary artifacts into the
domain at the maximum wind speed and longest
forecast horizon. The size of the computational do-
main thus depends on the wind velocities. To de-
fine the computational domain for a given day we215

find the maximum wind speed in the four cardinal
directions, as forecasted by the NWP model, in a
domain that is centered on Tucson, AZ, and 360 km
on both sides. These maximum wind speeds, along
with the longest forecast horizon, allows us to de-220

termine how much larger the computational domain
must be in each direction than the ANOC domain.
Figure 2 illustrates the computational domain and
the domain of interest for May 29, 2014. On this
day, the winds are stronger in the north-south than225

in the east-west direction. As a result, the compu-
tational domain is larger in the north-south than in
the east-west direction.

3.2. Advection model and random perturbations
In ANOC, predictions of CI are based on a 2D230

advection model with open boundaries. Random
perturbations are added to the CI and CMV fields
to account for data and model errors. In particular
our framework does not allow for cloud growth or
convection.235

The advection equation is

∂ψ

∂t
= −∇ · (Cψ)

ψ(0) = ψ0

, (3)
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Figure 1: This figure shows a schematic of the initialization and initial operation of the ANOC system. We illustrate input
data (satellite images and NWP wind fields) in orange, intermediaries (optical flow CMVs and background ensemble) in pink,
functions (assimilating CMV fields, removing divergence, etc.) in green, and outputs (analysis ensemble and forecasts) in
blue. The system is initialized at 16:00 UTC with an initial satellite image (Sat 1600) and NWP CMV field (NWP 1600).
The divergence is removed from the NWP CMV field, then the fields are randomly perturbed to form the initial ensemble.
This initial ensemble and its mean are advected for 15 minutes (represented by orange arrows) producing a 15 minute forecast
ensemble and the corresponding control forecast (15 min FX). This process is repeated three more times creating 30, 45, and
60 minute forecast ensembles for time periods 16:30, 16:45, and 17:00. In addition to the control forecast that is created by
advecting the ensemble mean (the analysis after assimilation), the mean of the advected ensemble is also used as a forecast.
The 15 minute forecast ensemble is also a background ensemble (Background) into which new data are assimilated. At the
16:15 time period, a new satellite image (Sat 1615) is available. Two consecutive satellite images (Sat 1600 and Sat 1615) are
used to calculate sparse optical flow vectors (OF 1615), that are assimilated into the background CMV field. While the optical
flow CMVs and background ensemble are outputs of calculations, they are inputs to the DA system. Divergence is removed
from the resulting CMV field and the CI field, derived from the current satellite image (Sat 1615) replaces the background CI
fields. This results in the analysis ensemble (Analysis). The above process is then repeated with the analysis ensemble rather
than the initial ensemble. The entire cycle repeats until a predetermined stopping time. There is a slight change at time period
17:00 when a new NWP CMV field is available (NWP 1700). The only difference for this time, and all other times when NWP
CMV fields are available, is that the NWP CMV field is assimilated into the CMV component of the background ensemble in
addition to the sparse optical flow CMVs.

where ψ(t) is the 2D CI field at time t, ψ0 is the
initial CI field, and C = (u, v) is the CMV field.
We solve Eq. (3) using a third-order Runge-Kutta
method in time and a fourth order spatial deriva-240

tive described in Wicker and Skamarock (2002). To
increase the effective resolution of the advected grid
we perform the advection on a 250 m grid. Further-
more, to prevent dispersion of sharp cloud edges
in the field, we linearly interpolate the CI field to245

the 250 m grid. This has the effect of a smoother
transition from cloud to clear sky, while maintain-
ing a sharp cloud edge at the original resolution
of the satellite image. The time step of each ad-
vection is calculated every 15 model minutes using250

dt = (0.7)(250)(umax + vmax)−1, where umax and
vmax are the maximum wind speeds in each direc-
tion in meters per second.

We keep the CMV fields, that are updated by a
DA cycle every hour, divergence free (see Fig. 1).255

Whenever an operation introduces divergence (as-
similating sparse optical flow or NWP CMV fields)
we remove it as follows. The CMV field, C, is de-
composed into a divergence-free component, C̃, and
a component that has non-zero divergence. The260

non-zero divergence component is the gradient of a
scalar field φ:

C̃ = C +∇φ. (4)

We obtain ∇φ, and therefore C̃, by solving Pois-
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Figure 2: CI field derived from a geostationary satellite im-
age on May 29, 2014. The area shown is a square with 360 km
sides, centered on Tucson, AZ. The solid line describes the
computational domain (for this day) over which CI fields
are advected and DA is performed. The smaller domain,
surrounded by a dashed line, is the area over which forecasts
are produced and is approximately the Tucson, AZ, region.
The whole image is the domain over which the average rela-
tive humidity is calculated in order to select a vertical level
from the NWP model.

son’s equation. We use Neumann boundary condi-
tions for numerical efficiency and solve the Poisson265

problem using a finite element solver implemented
in the FEniCS package (Alnæs et al., 2015; Logg
et al., 2012).

After every 5 minutes of modeled advection, each
ensemble member’s CI and CMV fields are ran-270

domly perturbed. To perturb the CI fields, we first
identify the cloudy areas of the CI field. This is
done by defining a “target field” which is equal to
one in cloudy areas and decays to zero (logistic de-
cay) in clear areas. The target field is multiplied275

element wise (Schur or Hadamard matrix product)
by a Gaussian random field (GRF). Each element
of the GRF has a mean of zero and standard de-
viation of 0.03 CI. The GRF has a squared expo-
nential correlation function with a length scale of 5280

km. The standard deviation and correlation func-
tion are tunable parameters that are chosen to pro-
duce reasonable CI fields. The product of target
and random fields is added to the ensemble mem-
ber’s CI field. This has the effect of perturbing the285

Figure 3: 30 minute CI forecast for April 26, 2014, at 13:00
MST. This figure shows the CI fields of four ensemble mem-
bers, the ensemble mean of all 20 members, and the con-
trol forecast (see Section 3.5). Ensemble members are differ-
ent due to random perturbations of the CI and CMV fields.
The ensemble mean is smoother than an individual ensemble
member, but the control forecast is not.

cloudy areas of the CI field while leaving the clear
areas unchanged.

To perturb the CMV component of the ensem-
ble, we generate a stream function using a GRF.
Each element of the GRF has a mean of zero and290

standard deviation of 1 m2 sec−1. The GRF has
a squared exponential correlation function with a
length scale equal to 50 km. After calculating the
corresponding 2D vector field,

U = ∂φ

∂y
, V = −∂φ

∂x
, (5)

where φ is the random stream function, the result-295

ing U and V random CMV fields are then multi-
plied by 0.25 resulting in a standard deviation of
0.25 m sec−1 for each element of each field. The
stream functions generate random, divergence-free
CMV fields which are added to the CMV compo-300

nent of the ensemble. The parameters that define
the CMV perturbations are tunable and chosen to
produce reasonable CMV fields and resulting CI
fields.

The CI fields of four ensemble members, the en-305

semble mean of all 20 members, and the control
forecast (see Section 3.5) are shown in Fig. 3. The
differences between the ensemble members are a re-
sult of the random perturbations and assimilating
CMVs from optical flow (see Section 3.3).310
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3.3. CMV observations from sparse optical flow
Optical flow is a method to determine a velocity

field from consecutive scalar fields. The optical flow
method relies on the assumption that the positions
of individual elements of the field move, but the315

field values remain unchanged. The sparse optical
flow method of Lucas-Kanade (Lucas and Kanade,
1981) identifies a set of points in the first of two
images where the gradient is large in orthogonal
directions. This set of points is tracked to the next320

image and, once the points are located in the next
image, the vectors that connect the set of points in
the first and second images define the velocity field
at these points in the second image.

We use this technique, implemented as described325

in Bradski (2000), to compute CMVs based on two
consecutive satellite images. The CMVs derived
from sparse optical flow are assimilated as “CMV
observations” (see Section 3.4 and Fig. 1). The
number of CMV observations, as well as their loca-330

tion, changes from image to image (every 15 min-
utes).

3.4. CMV observations from an NWP model
The ANOC forecasting system uses 2D advection

and we assume that there is only one cloud level335

with clouds moving with the wind. These assump-
tions are often violated (see, e.g., the case study
with two distinct cloud layers in Section 5.3) but
allow for an easily understandable and computa-
tionally inexpensive forecasting process.340

The NWP model we use has 38 vertical levels.
Following Lave and Kleissl (2013), we use the winds
from the vertical level with the highest mean rela-
tive humidity over an area that is 360 km on each
side and centered on Tucson, AZ. We use the u345

(west to east) and v (south to north) components of
the wind field in the selected vertical layer (neglect-
ing motion in the vertical direction). The two wind
components are interpolated using nearest neighbor
to a 1 km Arakawa-C grid. We then linearly inter-350

polate to the 250 m grid used for advection. The
resulting 2D wind field is smoothed by a Gaussian
filter with a standard deviation of 15 km. This level
of smoothing is found through trial and error to re-
duce forecast error.355

3.5. Data assimilation and forecasting
We use an ensemble Kalman filter (EnKF) to as-

similate CMV observations from sparse optical flow
(every 15 minutes) and CMV fields from the NWP

model (every hour) into the CMV component of the360

ensemble (see Fig. 1). An EnKF uses a numerical
model to generate a “background” ensemble and,
using the observations, updates the background to
an analysis ensemble (see, e.g., Evensen (2009)).
The analysis ensemble is used to generate forecasts365

at horizons of 15, 30, 45, and 60 minutes. Thus, the
ANOC system produces a forecast ensemble rather
than a single CI forecast. A single forecast can be
obtained, for example, by computing the ensemble
mean.370

Another single forecast can be generated by ad-
vecting (without random perturbations) the analy-
sis mean. This forecast is called the control fore-
cast. The ensemble mean forecast tends to be
smoother than the control forecast or individual375

ensemble members, but also tends to have higher
skill (Kalnay, 2003) even after accounting for the
additional smoothing (Toth and Kalnay, 1997).
The control forecast, however, maintains sharper
cloud edges that are important for forecasting how380

quickly solar power output will change. Our ap-
proach parallels that of contemporary operational
NWP ensemble systems.

Two implementations of EnKF are used in
ANOC. We use the stochastic ensemble Kalman fil-385

ter (Burgers et al., 1998) to assimilate sparse op-
tical flow CMVs and the Local Ensemble Trans-
form Kalman Filter (LETKF) (Hunt et al., 2007)
to assimilate CMV fields from the NWP model.
We make these choices because of computational390

considerations. Assimilating the CMV fields from
the NWP model is a high-dimensional problem be-
cause we assimilate a large number of observa-
tions on a large domain. The LETKF is a effi-
cient DA technique for high-dimensional problems.395

Assimilating the CMVs from optical flow is a low-
dimensional problem because the number of obser-
vations is small. The stochastic EnKF can handle
this task and is easy to implement and to tune.

The EnKFs require that we define an observation400

error covariance matrix, R. For optical flow CMVs
and NWP CMV fields, R is diagonal, i.e., errors are
assumed to be independent. This is common when
the only source of error in an observation comes
from instrument noise (Kalnay, 2003). Though this405

is not the case for the data we assimilate, it is a
convenient assumption for this preliminary study.
The diagonal elements of R are the squares of error
standard deviations. The error standard deviations
are constant and equal to 1 m sec−1 for optical flow410

CMVs and equal to 8 m sec−1 for NWP CMV fields.
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These values for R are chosen though trial and er-
ror to produce forecasts with low root mean square
error (RMSE, see Section 4.6 for a precise defini-
tion).415

The ensemble size for the EnKFs is 20 (one could,
however, also consider larger ensemble sizes). This
means that computed sample covariance matrices,
used during DA, contain large sampling error. Lo-
calization and inflation are two tools to account for420

this sampling error (Evensen, 2009). Localization
reduces spurious correlations due to a small ensem-
ble size and inflation enlarges the covariance matrix
because covariances computed with a small ensem-
ble size are typically underestimated.425

The parameters that define the localization and
inflation are tuned. We consider 36 different sets
of these parameters and, for each one, run ANOC
for three days that are carefully chosen to represent
different weather conditions. We choose April 15,430

2014, which is characterized by zonal flow (see Sec-
tion 5.1), May 29, 2014, which is characterized by
a short wave trough (see Section 5.2), and June 11,
2014, which is characterized by shallow convection
and zonal flow. We determine which localization/435

inflation parameters lead to the smallest RMSE for
each day and only find minor differences between
the three days (see Section 4.6 for a precise defini-
tion of RMSE). We then declare the set of param-
eters that leads to the smallest RMSE on average440

over the three days to be optimal and use these
parameters throughout this paper.

3.6. Initial ANOC ensemble
The CMV component of the initial ensemble is

generated as follows. We obtain a CMV field from445

the NWP model (see Section 3.4) and perturb it by
adding a random number from a normal distribu-
tion with mean zero and standard deviation 1 ms−1.
The CI component of the initial ensemble is de-
rived from the satellite image at 16:30 UTC that is450

perturbed by random scaling. This is done by lin-
early rescaling the CI values from a range of [0, 1] to
[min, max] where min is drawn from a normal dis-
tribution with mean zero and standard deviation
0.04 and max is drawn from a normal distribution455

with mean one and standard deviation 0.2.

3.7. Computational requirements of ANOC
Each day’s forecast has a different run time be-

cause different wind conditions lead to differently
sized computational domains. On May 29, 2014460

(also discussed in Section 5.2), a one hour long fore-
cast requires approximately 5.5 minutes. Approxi-
mately 2% of the time is spent assimilating NWP
CMV fields, 2% of the time is spent assimilating
sparse optical flow CMVs, 34% of the time is spent465

advecting and perturbing, and 64% of the time
is spent removing divergence from the ensemble’s
CMV fields. The large proportion of time spent on
removing divergence (solving a Poisson problem)
can be reduced, but we do not pursue this problem470

here. The above run time for the ANOC system
was found on a virtual machine allocated 32 of 48
virtual cores coming from two Intel Xeon E5-2690
v3 processors each with 12 cores (24 virtual cores
with hyper threading) with a base frequency of 2.6475

GHz.

4. Reference forecasts

In this section we describe reference forecast sys-
tems that will be used to validate the ANOC fore-
cast in later sections. None of the reference fore-480

cast systems use ensembles or DA. These systems,
however, are intuitive and some are in use. Later
on (Sections 5 and 6), these methods will serve as
benchmarks to assess the utility of ANOC with a
set of performance metrics, described at the end of485

this section.
All reference forecast systems (except persis-

tence) estimate CMV based on one source of in-
formation (satellite imagery, a NWP model or a
radiosonde) and use ANOC’s 2D advection model490

(without random perturbations) for the CI fore-
cast. For each forecast system, we explain how
many CMVs are used and how often these are
updated during a six hour forecasting day. This
should be compared to the ANOC system that uses495

N ×M × 6× 4× 20 vectors for one day’s forecasts
assuming a computational domain of size N ×M ,
six hours of forecasts, a new satellite image every
15 minutes, and 20 ensemble members.

4.1. Persistence forecast500

In the persistence forecast the CI derived from
one satellite image (see Section 2.1) is used as the
15, 30, 45, and 60 minute forecast. The forecasts
are updated every 15 minutes when a new satellite
image becomes available. The persistence forecast505

is intuitive and accurate on short time horizons,
but less accurate for longer horizons. No vectors
are used to produce this forecast because it does
not make use of a CMV field.
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4.2. Radiosonde forecast510

The radiosonde forecast uses the TWC 12Z ra-
diosonde measurements of winds in u and v direc-
tions at the level with the highest relative humid-
ity, see also Lave and Kleissl (2013); Guillot et al.
(2012). The u and v winds are used over the en-515

tire domain and for the entire day. Every 15 min-
utes, the CI field derived from a satellite images
is advected using these winds and the 2D advec-
tion (without random perturbation) of ANOC. For
one six hour day, this forecast uses one vector to520

describe the CMV field.

4.3. Forecast based on the spatial average of NWP
winds

The forecast based on the spatial average of NWP
winds uses the spatial average of the u and v wind525

components of the NWP model at the vertical layer
described in Section 3.4. The NWP winds are up-
dated hourly, therefore this forecast updates the
CMV field every hour. For one six hour day, this
forecast uses six vectors to describe the CMV field.530

4.4. Forecast based on NWP winds
Winds from the NWP model, as described in

Section 3.4, are used to generate a divergence-free
CMV field. This technique uses the NWP model
winds that are updated hourly, therefore the CMV535

field is updated every hour. For one six hour day
and an N ×M advection domain, this forecast uses
N ×M × 6 vectors to describe the CMV field.

4.5. Dense optical flow forecast
We use dense optical flow applied to consecutive540

satellite images to generate a CMV field (see also
Nonnenmacher and Coimbra (2014)). We use the
dense optical flow method of Horn-Schunck (Horn
and Schunck, 1981), implemented as described in
Sun et al. (2010). The Horn-Schunck method is545

a variational technique that includes a smoothness
constraint on the dense vector field. One effect of
this smoothness constraint is that portions of the
image that do not contain points to be tracked (be-
cause the image gradient is uniform) assume values550

from neighboring regions.
The CMV field is updated when a new satellite

image becomes available (every 15 minutes). We
remove divergence from the CMV field before pro-
ducing a CI forecast with the 2D advection model555

(without random perturbations) of ANOC. For one
six hour day and an N ×M advection domain, this

forecast uses N×M×6×4 vectors, assuming a new
satellite image every 15 minutes, to describe the
CMV field. Dense optical flow creates CMV vec-560

tors at every point in the image. This is in contrast
to sparse optical flow, used in ANOC, that gener-
ates CMVs only at points that are easily tracked.

4.6. Performance metrics
Comparisons of the various forecast systems use565

the following performance metrics for the CI field
forecasts:

(i) Root Mean Square Error (RMSE) of a CI fore-
cast and the CI field derived from a satellite
image.570

(ii) The Pearson correlation coefficient (Corr.)
between the CI forecast and the CI field de-
rived from a satellite image.

(iii) Bias between the CI forecast and the CI field
derived from a satellite image.575

(iv) RMSE Skill Score, with the persistence fore-
cast serving as the reference forecast (SSper).

To compute the performance metrics, we use the
time series of CI generated by a forecast system
(Xf ) and the time series of CI derived from the580

satellite images (XT ), both over the domain of in-
terest, as described in Section 3.1. These time series
are of shape (Nx, Ny, Nt) where Nx and Ny are the
side lengths of the domain of interest, and Nt is the
number of time periods being compared. For com-585

putations, we reshape the arrays into one dimen-
sional vectors xf and xT , each of size N = NxNyNt.
With this notation, the performance metrics are de-
fined as:

RMSE =

√√√√ 1
N

N∑
i=1

(xi,f − xi,T )2, (6)

590

Corr. =
∑N

i=1(xi,f − xf )(xi,T − xT )√∑N
i=1(xi,f − xf )2

√∑N
i=1(xi,T − xT )2

,

(7)

Bias = 1
N

N∑
i=1

(xi,f − xi,T ), (8)

and,
SSper = 1− RMSEf

RMSEper
, (9)

where xi,f and xi,T are the ith entry of xf and xT ,
x is the average of x, RMSEf is the RMSE of a
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forecast, and RMSEper is the RMSE of the persis-595

tence reference forecast. Further discussion of these
metrics can be found in Wilks (2011).

5. Case studies

We describe how ANOC operates and how it
compares to reference forecasting systems in the600

context of three case studies that represent typical
weather conditions for Tucson, AZ.

5.1. Case Study 1: Zonal flow

The first day we explore, April 15, 2014, is domi-
nated by zonal flow without convection. The clouds605

are cirrus with low CI values, mostly less than
0.6 CI, and do not exhibit much dissipation or
growth. The 12Z radiosonde reports a relative hu-
midity peak near 11 km where the wind speed is
30 ms−1. For this day, the essential assumptions610

of the ANOC, dense optical flow, and NWP winds
forecast systems are satisfied and we expect these
methods to produce similar forecasts.

The performance metrics are shown in Table 1.
Bold type highlights the smallest errors and high-615

est correlation. As expected all forecast systems,
apart from persistence and radiosonde forecast sys-
tems, perform similarly on this day. The ANOC
forecasts, however, have lower RMSEs and higher
correlations than the other forecast systems for all620

horizons. Moreover, at 45 and 60 minute horizons
the ANOC forecasts have significantly higher cor-
relation than all other forecast systems.

Figure 4 shows RMSE as a function of forecast
horizon of the ANOC ensemble, the ANOC ensem-625

ble mean and control, the dense optical flow fore-
cast, the forecast using NWP winds, and the per-
sistence forecast. For clarity, in Figs. 4, 5 and 7,
the radiosonde forecast and the forecast based on
the spatial average of NWP winds are not included.630

The RMSE of the individual ANOC ensemble mem-
bers are all similar to the RMSE of the forecast
based on NWP winds and the forecast based on
dense optical flow for this day. The effect of averag-
ing the ensemble members results in the ANOC en-635

semble mean forecast that has a lower RMSE than
any of the other ensemble members. The ANOC
control forecast has an RMSE lower than the indi-
vidual ANOC ensemble members, but higher than
the ensemble mean.640

Figure 4: RMSE as a function of forecast horizon in Case
Study 1 (zonal flow). Shown are RMSE of the ANOC en-
semble, ANOC ensemble mean, ANOC control, and of two
reference forecast systems. All forecast systems perform sim-
ilarly on this day.

5.2. Case Study 2: Shortwave trough

The weather on May 29, 2014 is driven by a short-
wave trough, moving from west to east. Local winds
are strongest from south to north, with the wind
field weaker but more variable in the west to east645

direction. The clouds on this day are a mixed va-
riety of mid-altitude clouds. The clouds are sig-
nificantly thicker than the clouds in Case Study 1,
with many of the larger clouds having a CI value of
around 1.0. There is also a larger amount of con-650

vection and a greater amount of cloud growth and
dissipation. The 12Z radiosonde for this day shows
a peak in relative humidity near 5.5 km where the
wind speed is 15 ms−1.

The performance metrics for the forecast systems655

are shown in Table 2. The ANOC ensemble mean
and control have higher correlations and lower RM-
SEs than all other forecast systems. As in Case
Study 1, the reduction in RMSE and the increase
in correlation of the ANOC forecasts compared to660

the other forecast systems increases with the fore-
cast horizon. This is illustrated in Fig. 5, where
we show RMSE as a function of forecast horizon
for the ANOC ensemble, ANOC ensemble mean,
ANOC control, the forecast based on dense optical665

flow, the forecast based on NWP winds, and the
persistence forecast. All ANOC ensemble members
have comparable RMSE, that are also comparable
to the forecast based on NWP winds, but lower
than the forecast based on dense optical flow.670

Figure 6, shows a typical forecast using the
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Table 1: Performance metrics for Case Study 1, April 15, 2014, a day with cloud motion dominated by zonal flow. The units
of RMSE and bias are CI. The highest correlation and lowest RMSE and bias for each forecast horizon are in bold type. The
ANOC ensemble mean and control forecast have lower RMSEs and higher correlations than the reference forecasts, but all
forecasts have low RMSE.

ANOC Ens. Mean ANOC Control Persis. Opt. Flow NWP Winds NWP Avg. Winds Radiosonde
Horizon

RMSE 15 0.03 0.03 0.07 0.04 0.04 0.04 0.07
30 0.04 0.04 0.07 0.05 0.05 0.05 0.08
45 0.05 0.05 0.08 0.06 0.06 0.06 0.09
60 0.05 0.06 0.09 0.06 0.07 0.06 0.09

Corr. 15 0.85 0.84 0.31 0.80 0.79 0.82 0.29
30 0.77 0.73 0.29 0.70 0.62 0.67 0.20
45 0.68 0.63 0.22 0.53 0.49 0.55 0.06
60 0.64 0.57 0.06 0.48 0.37 0.46 0.08

Bias 15 0.00 0.00 −0.01 0.00 0.00 0.00 0.00
30 0.00 0.00 −0.01 0.00 −0.01 0.00 0.00
45 −0.01 −0.01 −0.01 −0.01 −0.01 −0.01 −0.01
60 −0.01 −0.01 −0.01 −0.01 −0.02 −0.01 −0.01

Table 2: Performance metrics for Case Study 2, May 29, 2014, a day with weather conditions driven by a shortwave trough.
The units of RMSE and bias are CI. The highest correlation and lowest RMSE and bias for each forecast horizon are in bold
type. The ANOC ensemble mean and control forecasts have the lowest RMSE for all forecasts horizons. The forecast based
on NWP winds has a lower RMSE than that based on dense optical flow for the 30, 45, and 60 minute horizons.

ANOC Ens. Mean ANOC Control Persis. Opt. Flow NWP Winds NWP Avg. Winds Radiosonde
Horizon

RMSE 15 0.15 0.15 0.17 0.15 0.16 0.15 0.19
30 0.18 0.18 0.22 0.20 0.19 0.19 0.26
45 0.17 0.18 0.24 0.24 0.20 0.21 0.28
60 0.18 0.19 0.27 0.28 0.21 0.21 0.30

Corr. 15 0.88 0.88 0.83 0.87 0.87 0.87 0.80
30 0.83 0.82 0.73 0.81 0.81 0.83 0.62
45 0.84 0.82 0.65 0.75 0.80 0.78 0.46
60 0.82 0.81 0.54 0.71 0.79 0.78 0.37

Bias 15 0.00 0.00 0.03 −0.04 0.01 0.00 0.04
30 0.00 0.00 0.06 −0.08 0.02 0.00 0.08
45 −0.01 0.00 0.07 −0.14 0.02 −0.01 0.08
60 −0.02 −0.01 0.08 −0.17 0.03 0.00 0.07

ANOC ensemble mean, dense optical flow and
NWP winds along with corresponding errors. The
forecast based on dense optical flow leads to large
errors because it advects the cloud edge too far to675

the east and thins the clouds too much. These is-
sues are reduced in the ANOC forecasts because the
optical flow derived information is combined with
the winds of the NWP model.

5.3. Case Study 3: Mid-latitude trough680

The weather on April 26, 2014, is driven by a
strong mid-latitude trough. Winds are blowing
from the southwest to the northeast. There are two
distinct cloud layers and clouds are a mixed vari-
ety of mid-altitude clouds as well as high-altitude685

cirrus. The cirrus clouds are moving at a signifi-
cantly higher speed than the mid-altitude clouds:
the 12Z radiosonde shows relative humidity peaks
near 4 km and 10 km with respective wind speeds
of 20 ms−1 and 40 ms−1. Thus, this case study fea-690

tures a two level cloud system and violates ANOC’s
assumption of a single cloud layer.

The performance metrics are listed in Table 3. As
before, bold type highlights the smallest errors and
highest correlation. The ANOC ensemble mean has695

lower RMSE and higher correlation than the other
methods. Figure 7 shows RMSE as a function of
forecast horizon of the ANOC ensemble, ensemble
mean, and control as well as of the forecasts based
on dense optical flow, NWP winds, and the persis-700

tence forecast. In contrast to Case Study 2, we find
that RMSE of the forecast based on NWP winds is
higher than RMSE of the forecast based on dense
optical flow. The relative reduction in RMSE of
the forecast based on dense optical flow compared705

to the forecast based on NWP winds, however, de-
creases with the forecast horizon, i.e., on time scales
that are more appropriate for the NWP model.

Forecasts of the ANOC ensemble mean, dense op-
tical flow, and NWP winds are shown in Fig. 8. The710
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Table 3: Performance metrics for Case Study 3, April 26, 2014, a day with weather driven by a strong mid-latitude trough.
The units of RMSE and bias are CI. The highest correlation and lowest RMSE and bias for each forecast horizon are in bold
type. The ANOC ensemble mean and control forecasts have the lowest RMSE for all forecasts horizons. The forecast based
on dense optical flow has a lower RMSE than that based NWP winds for all forecast horizons.

ANOC Ens. Mean ANOC Control Persis. Opt. Flow NWP Winds NWP Avg. Winds Radiosonde
Horizon

RMSE 15 0.23 0.23 0.24 0.23 0.30 0.29 0.36
30 0.28 0.29 0.32 0.29 0.40 0.38 0.39
45 0.29 0.31 0.37 0.34 0.40 0.41 0.37
60 0.29 0.32 0.38 0.35 0.39 0.39 0.35

Corr. 15 0.76 0.75 0.73 0.75 0.61 0.63 0.40
30 0.63 0.61 0.52 0.62 0.24 0.32 0.24
45 0.60 0.58 0.36 0.48 0.18 0.16 0.28
60 0.60 0.56 0.35 0.49 0.23 0.27 0.40

Bias 15 −0.02 −0.02 0.01 0.02 −0.10 −0.08 −0.10
30 −0.03 −0.03 0.01 0.04 −0.12 −0.10 −0.04
45 −0.04 −0.04 0.00 0.04 −0.11 −0.10 0.01
60 −0.07 −0.06 −0.03 0.02 −0.09 −0.07 −0.01

Figure 5: RMSE as a function of forecast horizon in Case
Study 2 (shortwave trough). Shown are RMSE of the ANOC
ensemble, ANOC ensemble mean, ANOC control, and of two
reference forecast systems. The forecast based on dense op-
tical flow has the highest RMSE. The ANOC ensemble and
the forecast based on NWP winds have comparable RMSE.
The ANOC ensemble mean and control forecast have the
lowest RMSE.

ANOC ensemble mean and dense optical flow fore-
casts contain a thick cloud in the upper portion
of the domain. In the same part of the domain,
the clouds produced by the forecast based on NWP
winds are thinner. This occurs because, as the ra-715

diosonde indicates, there are two cloud layers mov-
ing at different speeds. The forecast based on NWP
winds sometimes uses winds from the the high-
altitude level (contains the fast moving cirrus) but
other times uses winds from the mid-altitude level720

(contains the slower moving mid-altitude clouds).
This problem is avoided in ANOC by assimilating
sparse optical flow vectors in addition to the CMV

fields from the NWP model.

5.4. Case study summary725

In all three case studies, the daily RMSE of the
ANOC ensemble mean is lower than those of the ref-
erence forecasts for all forecast horizons (15, 30, 45,
and 60 minutes). The precise value of daily RMSE,
however, varies between days. When the weather730

is dominated by advection (Case Study 1), all fore-
casts with time dependent CMV fields (NWP spa-
tially averaged winds, NWP winds, dense optical
flow, and ANOC) yield better forecasts, in terms
of the performance metrics, than the persistence or735

radiosonde forecasts. Whether forecasts based on
dense optical flow or those based on NWP winds
have lower RMSE depends on the weather con-
ditions: in Case Study 2 (shortwave trough), the
NWP based forecasts are better than those based740

on dense optical flow, but in Case Study 3 (mid-
latitude trough), dense optical flow leads to better
forecasts than forecasts based on the NWP model.
The ANOC forecast system combines the strength
of both techniques and leads to better forecasts, but745

requires an increase in computational requirements
and conceptual complexity.

Finally, recall that the ANOC ensemble mean
forecast results in a smoother forecast (Fig. 3) with
a lower standard deviation, and lower RMSE than750

the ANOC ensemble members and ANOC control
(see Figs. 5 and 7). RMSE can be decomposed as

RMSE =
√
σ2

f + σ2
t − 2σfσtCorr. + Bias2, (10)

where σf is the standard deviation of the forecast
and σt is the standard deviation of the observed CI
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Figure 6: Forecasts and errors in Case Study 2, May 29, 2014, at 12:15 MST. The forecast horizon is 30 minutes. Top row, left
to right: satellite derived CI field at 12:15 MST, and forecasts based on dense optical flow, NWP winds and ANOC. Bottom
row: error fields corresponding to each forecast. The forecast based on dense optical flow does not correctly advect the cloud
edge and thins the cloud, leading to poor performance metrics compared to ANOC or NWP wind based forecasts.

field. Therefore, increasing smoothness (decreasing755

σf ) can reduce RMSE.

The lower RMSE of the ANOC ensemble mean
compared to the ANOC control suggests some
of the reduction is a result of increased smooth-
ness. Case Studies 2 and 3, however, suggest that760

smoothing is not the only source of the reduced
RMSE. In Case Study 2, ANOC’s ensemble mem-
bers all yield a lower RMSE than the forecast based
on dense optical flow (see Fig. 5) and the ensemble
members are not smoothed. In the same case study,765

the ANOC control forecast has a lower RMSE than
the forecast based on dense optical flow or NWP
winds and also does not have a smoothed CI field.
In Case Study 3, ANOC’s ensemble members and
control forecast yield a lower RMSE than forecasts770

based only on the NWP model for all horizons. In
the same case study, the RMSEs of the ANOC en-
semble members and control forecast are compara-
ble to the RMSE of the forecast based on dense
optical flow at the 15 and 30 minute horizons, but775

lower at the 45 and 60 minute horizons (see Fig. 7).
The choice between using the ANOC ensemble

mean or the ANOC control forecast comes down
to a choice between smoothness and RMSE. If an
application requires a forecast with low RMSE but780

does not require a field with realistically sharp cloud
edges, then the ensemble mean may be a better
forecast. If, however, the sharpness of the cloud
edges is critical (e.g. forecasting ramp rates) then
the control forecast may be more valuable.785

6. Analysis over 3 months

We compute performance metrics over 39 days
taken from April, May, and June of 2014. We only
consider days where cloud cover is detected. We
manually inspect the satellite images over the three790

month period. Days with at least one image with
(even a small amount of) cloud coverage are in-
cluded. Thus, while all 39 days have some amount
of cloud cover at some point during the day, there
are periods that are free of cloud coverage.795
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Figure 7: RMSE as a function of forecast horizon in Case
Study 3 (mid-latitude trough). Shown are RMSE of the
ANOC ensemble, ANOC ensemble mean, ANOC control,
and of two reference forecast systems. The forecast based
on NWP winds has the highest RMSE. The forecast based
on dense optical flow is comparable to the ANOC forecasts
for 15 and 30 minute horizons. RMSE of the forecast based
on dense optical flow is larger than RMSE of the ANOC
ensemble and control forecast for 45 and 60 minute horizons.

We first consider the RMSE for each of the 39
individual days. The results are shown in Fig. 9.
We highlight four observations from these results.

1. The ANOC ensemble mean tends to have a
daily RMSE lower than the forecast based on800

NWP winds or the forecast based on dense op-
tical flow.

2. The improvement in RMSE for the ANOC en-
semble mean is more significant for days in
which the RMSE of all forecasts is relatively805

high (above 0.5 CI for instance).
3. The ANOC ensemble mean typically leads to a

better forecasts for longer horizons. For exam-
ple, for the 15 minute forecast horizon, there
are 12 days for which the ANOC ensemble810

mean has an RMSE above 0.1. Of these 12
days the ANOC ensemble mean has the low-
est RMSE for 8. For the 60 minute horizon,
there are 18 days for which the ANOC ensem-
ble mean has an RMSE above 0.1, and the815

ANOC ensemble mean has a lower RMSE for
all of them. This may be due to an increase
in ensemble spread at longer forecast horizons
leading to greater smoothing.

4. The two ANOC forecasts perform similarly to820

the more established reference forecasts on all
days suggesting that the ANOC method is a
useful technique.

Performance metrics, averaged over 39 days, are
listed in Table 4. The ANOC ensemble mean has a825

lower RMSE and higher correlation than all other
forecast systems. The ANOC control forecast per-
forms almost the same as the forecasts based on
dense optical flow and NWP winds in terms of both
RMSE and correlation. The bias of all the forecasts830

are nearly zero apart from the forecasts based on
NWP or radiosonde winds, though these are low as
well.

The RMSE skill scores (persistence serves as the
reference) of the ANOC ensemble mean, ANOC835

control, the forecast based on NWP winds, and the
dense optical flow forecast are listed in Table 5. The
ANOC ensemble mean forecast skill increases with
forecast horizon. The ANOC control forecast skill
is fairly consistent over time. The skill of the fore-840

cast based on dense optical flow, however, decreases
with the forecast horizon. The skill of the forecast
based on NWP winds is lower, but does not change
with forecast horizon.

These skill score results are intuitive. Dense op-845

tical flow used here is based on the movement of
clouds over a 15 minute period. The CMV fields
from dense optical flow will therefore be sensitive
to the dynamics over this shorter time scale. It is
expected that skill scores of forecasts based on these850

CMV fields will decrease with forecast horizon. The
short term nature of the dense optical flow CMV
fields is not found in the NWP model. This can
partially explain why the skill scores based on NWP
winds does not increase with forecast horizon. The855

NWP model we use is initialized at 12Z and does
not assimilate observations throughout the day. It
is thus reasonable that the skill score of forecasts
based on NWP winds is relatively low since it does
not use more recent information from the satellite860

images.
The ANOC system uses DA to combine both of

these sources of information based on the relative
uncertainty assigned to each. For that reason, ex-
pected that the ensemble mean and control forecast865

have a higher skill for all the horizons than either
the NWP winds or dense optical flow forecasts. The
skill of the ANOC ensemble mean increases with the
forecast horizon, while the ANOC control forecast
decreases slightly. Ensemble means often have a870

larger skill than control forecasts over longer fore-
cast horizons (Kalnay, 2003), but some of the skill
increase of the ensemble mean can be attributed to
increased smoothness. This smoothing is based on
the uncertainty of the underlying system.875
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Figure 8: Forecasts and errors in Case Study 3, April 26, 2014, at 13:00 MST. The forecast horizon is 30 minutes. Top row,
left to right: satellite derived CI field at 13:00 MST, and forecasts based on dense optical flow, NWP winds and the ANOC
ensemble mean. Bottom row: error fields corresponding to each forecast. The NWP winds forecast does not correctly advect
the clouds on this day due to the presence of two cloud levels and two local maxima in relative humidity. The ANOC system
corrects the NWP based CMV field by assimilating sparse optical flow CMVs.

Figure 10 illustrates average RMSE of ANOC en-
semble mean and control, forecast based on dense
optical flow, and forecast based on NWP winds.
Average RMSE exhibits a pattern familiar from the
case studies: RMSE of ANOC ensemble mean is880

lower than RMSE of forecasts based on dense op-
tical flow or NWP winds. While the RMSE of all
methods increases with forecast horizon, the RMSE
of the ANOC ensemble mean increases at the slow-
est rate. The ANOC control forecast performs simi-885

larly to the optical flow forecast as 15 and 30 minute
forecasts, but has a lower RMSE at 45 and 60
minute horizons.

7. Conclusion

We introduced the ANOC forecast system for890

intra-hour forecasts of CI over the area of a city.
ANOC uses a conceptually simple forecast model,
and combines CMV data based on the uncertainties

associated with each data source using data assim-
ilation.895

We validated the ANOC system by comparing it
to reference forecasts techniques. Our comparisons
are based on a standard set of performance metrics.
We considered three representative case studies and
found that the ANOC forecasts perform similarly or900

better, in terms of the performance metrics, than
the reference forecast techniques. This comes at the
cost of an increase in computational requirements
and conceptual complexity. We also considered per-
formance metrics over 39 days to confirm our con-905

clusions from the case studies. The results suggest
that ANOC, or similar DA based systems, can be
useful in intra-hour forecasting for solar power ap-
plications.

The ANOC ensemble mean is smoother than the910

reference forecasts, and is smoother than the true
CI fields. This smoothness is caused by ensemble
spread. Quantifying the relationship between en-
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Figure 9: Bar charts of daily RMSE (measured in units of CI) for the ANOC ensemble mean and control, and forecasts using
dense optical flow and NWP winds for forecast horizons of 15, 30, 45, and 60 minutes for each cloudy day and all cloudy
days for the study period. The ANOC forecast typically has the lowest RMSE of all three methods when all methods yield a
large RMSE, e.g., 4/5, 4/26 or 6/17. The ANOC forecast sometimes has a higher RMSE than the reference forecasts when all
methods yield a low RMSE, e.g., 5/5 or 6/22. The forecast methods tend to produce similar results.
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Table 4: Performance metrics averaged over 39 days. The units of RMSE and bias are CI. The highest correlation and lowest
RMSE and bias for each forecast horizon are in bold type. The ANOC control forecast performs very similarly to the forecasts
based on optical flow and those based on NWP winds. The ANOC ensemble mean forecast has the lowest RMSE for all
forecasts horizons, though it performs similarly to the reference forecasts.

ANOC Ens. Mean ANOC Control Persis. Opt. Flow NWP Winds NWP Avg. Winds Radiosonde
Horizon

RMSE 15 0.11 0.11 0.12 0.11 0.12 0.12 0.14
30 0.12 0.13 0.14 0.13 0.14 0.14 0.15
45 0.13 0.14 0.15 0.15 0.15 0.15 0.16
60 0.13 0.15 0.16 0.15 0.15 0.15 0.16

Corr. 15 0.88 0.87 0.84 0.87 0.85 0.86 0.80
30 0.84 0.82 0.79 0.82 0.79 0.79 0.75
45 0.83 0.80 0.76 0.78 0.77 0.76 0.73
60 0.81 0.77 0.74 0.75 0.76 0.75 0.71

Bias 15 0.00 0.00 0.00 0.00 −0.01 −0.01 −0.01
30 0.00 −0.01 0.00 0.00 −0.02 −0.02 −0.01
45 −0.01 −0.01 −0.01 −0.01 −0.02 −0.02 −0.02
60 −0.01 −0.01 −0.01 −0.01 −0.02 −0.02 −0.02

Table 5: RMSE skill scores averaged over 39 days (reference
is persistence forecast). The highest skill score for each fore-
cast horizon is in bold type. The ANOC Ensemble mean
and control forecasts have a higher skill for all forecast hori-
zons. The ANOC ensemble mean forecast skill grows at a
faster rate than the other forecasting methods as the forecast
horizon increases.

Horizon ANOC Ens. Mean ANOC Control Opt. Flow NWP Winds

15 0.12 0.10 0.09 0.05
30 0.14 0.08 0.07 0.01
45 0.17 0.09 0.05 0.04
60 0.16 0.08 0.03 0.05

semble spread and forecast uncertainty or skill is
left for future work.915

Each individual ensemble member and the con-
trol forecast of the ANOC is not smoothed. A
smooth CI forecast produces a smooth power fore-
cast, this results in ramp rates that are underesti-
mated. We can therefore use individual ensemble920

members and the control forecast rather than the
ensemble mean to predict the amplitude of ramp
events. The control forecast is the best prediction of
the ramp event, and the individual ensemble mem-
bers could provide information on the uncertainty925

of the magnitude and timing of the ramp event.
In summary, ANOC’s forecasts are on average

similar or better, in terms of the performance met-
rics, than the reference forecasts. This conclusion
is based on averages computed over a three month930

period and over a domain centered on Tucson, AZ.
Further study is needed to determine if the ANOC
system will perform similarly in other parts of the
country or during a different time of the year over
Tucson. Our study, however, indicates that ANOC,935

or systems similar to ANOC, are computationally

Figure 10: Average RMSE as a function of forecast horizon
for ANOC ensemble mean and control, forecasts based on
dense optical flow and forecasts based on NWP winds. The
ANOC forecast yields lower RMSE than the other forecast
techniques. For the large forecast horizons, RMSE of the
forecast based on NWP winds is lower than RMSE of the
forecast based on dense optical flow.

feasible and further developments for a ensemble
based DA framework in this context is promising.
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